Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 49
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Andresen
1
69 kgWang
2
70 kgSchandorff Iwersen
3
62 kgMengel
4
65 kgJørgensen
5
68 kgMikkelsen
7
72 kgAagaard Hansen
9
77 kgPedersen
10
74 kgKjeldsen
11
69 kgHansen
14
68 kgSchrøder
18
79 kgLond
22
65 kgMunk-Olsen
24
68 kgLock
27
58 kgYang
29
63 kgOlsen
32
62 kgRosenlund
37
72 kg
1
69 kgWang
2
70 kgSchandorff Iwersen
3
62 kgMengel
4
65 kgJørgensen
5
68 kgMikkelsen
7
72 kgAagaard Hansen
9
77 kgPedersen
10
74 kgKjeldsen
11
69 kgHansen
14
68 kgSchrøder
18
79 kgLond
22
65 kgMunk-Olsen
24
68 kgLock
27
58 kgYang
29
63 kgOlsen
32
62 kgRosenlund
37
72 kg
Weight (KG) →
Result →
79
58
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRESEN Tobias Lund | 69 |
2 | WANG Gustav | 70 |
3 | SCHANDORFF IWERSEN Emil | 62 |
4 | MENGEL Nikolaj | 65 |
5 | JØRGENSEN Adam Holm | 68 |
7 | MIKKELSEN Pelle Køster | 72 |
9 | AAGAARD HANSEN Tobias | 77 |
10 | PEDERSEN Rasmus Søjberg | 74 |
11 | KJELDSEN Christian Spang | 69 |
14 | HANSEN Alexander Arnt | 68 |
18 | SCHRØDER Lucas | 79 |
22 | LOND Daniel | 65 |
24 | MUNK-OLSEN Oscar | 68 |
27 | LOCK Dennis | 58 |
29 | YANG Boxuan | 63 |
32 | OLSEN Rasmus Bisgaard | 62 |
37 | ROSENLUND Stian | 72 |