Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Mikkelsen
1
72 kgAagaard Hansen
4
77 kgPedersen
5
74 kgJørgensen
6
68 kgSchandorff Iwersen
10
62 kgMengel
13
65 kgRosenlund
15
72 kgNielsen
19
69 kgLond
20
65 kgToftemark
21
73 kgHansen
27
68 kgØxenberg
29
69 kgNielsen
30
60 kgGudmann
37
64 kgMortensen
38
62 kgWang
43
70 kgKongstad
51
75 kgØhlenschlæger
53
66 kgHass Slivsgaard
60
65 kgTvergaard
67
72 kg
1
72 kgAagaard Hansen
4
77 kgPedersen
5
74 kgJørgensen
6
68 kgSchandorff Iwersen
10
62 kgMengel
13
65 kgRosenlund
15
72 kgNielsen
19
69 kgLond
20
65 kgToftemark
21
73 kgHansen
27
68 kgØxenberg
29
69 kgNielsen
30
60 kgGudmann
37
64 kgMortensen
38
62 kgWang
43
70 kgKongstad
51
75 kgØhlenschlæger
53
66 kgHass Slivsgaard
60
65 kgTvergaard
67
72 kg
Weight (KG) →
Result →
77
60
1
67
# | Rider | Weight (KG) |
---|---|---|
1 | MIKKELSEN Pelle Køster | 72 |
4 | AAGAARD HANSEN Tobias | 77 |
5 | PEDERSEN Rasmus Søjberg | 74 |
6 | JØRGENSEN Adam Holm | 68 |
10 | SCHANDORFF IWERSEN Emil | 62 |
13 | MENGEL Nikolaj | 65 |
15 | ROSENLUND Stian | 72 |
19 | NIELSEN Magnus Lorents | 69 |
20 | LOND Daniel | 65 |
21 | TOFTEMARK Lucas | 73 |
27 | HANSEN Alexander Arnt | 68 |
29 | ØXENBERG Peter | 69 |
30 | NIELSEN Daniel Weis | 60 |
37 | GUDMANN William | 64 |
38 | MORTENSEN Oliver | 62 |
43 | WANG Gustav | 70 |
51 | KONGSTAD Alfred | 75 |
53 | ØHLENSCHLÆGER Kasper Jul | 66 |
60 | HASS SLIVSGAARD Malthe | 65 |
67 | TVERGAARD Mikkel | 72 |