Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Seigneur
2
71 kgMoreau
3
71 kgAuger
4
78 kgMaignan
5
63 kgLangella
6
76 kgDurand
7
76 kgMorin
8
79 kgLefèvre
9
67 kgDessel
11
63 kgAgnolutto
12
69 kgJoly
16
74 kgVogondy
18
62 kgChavanel
19
73 kgDerepas
20
69 kgNeuville
21
85 kgFritsch
24
65 kgCasar
31
63 kgMoreau
32
77 kg
2
71 kgMoreau
3
71 kgAuger
4
78 kgMaignan
5
63 kgLangella
6
76 kgDurand
7
76 kgMorin
8
79 kgLefèvre
9
67 kgDessel
11
63 kgAgnolutto
12
69 kgJoly
16
74 kgVogondy
18
62 kgChavanel
19
73 kgDerepas
20
69 kgNeuville
21
85 kgFritsch
24
65 kgCasar
31
63 kgMoreau
32
77 kg
Weight (KG) →
Result →
85
62
2
32
# | Rider | Weight (KG) |
---|---|---|
2 | SEIGNEUR Eddy | 71 |
3 | MOREAU Christophe | 71 |
4 | AUGER Guillaume | 78 |
5 | MAIGNAN Gilles | 63 |
6 | LANGELLA Anthony | 76 |
7 | DURAND Jacky | 76 |
8 | MORIN Anthony | 79 |
9 | LEFÈVRE Laurent | 67 |
11 | DESSEL Cyril | 63 |
12 | AGNOLUTTO Christophe | 69 |
16 | JOLY Sébastien | 74 |
18 | VOGONDY Nicolas | 62 |
19 | CHAVANEL Sylvain | 73 |
20 | DEREPAS David | 69 |
21 | NEUVILLE Jerome | 85 |
24 | FRITSCH Nicolas | 65 |
31 | CASAR Sandy | 63 |
32 | MOREAU Francis | 77 |