Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Brard
1
74 kgMoreau
2
71 kgSeigneur
3
71 kgMorin
4
79 kgFinot
5
65 kgAuger
6
78 kgHeulot
7
69 kgChavanel
8
73 kgNeuville
9
85 kgMaignan
10
63 kgEstadieu
11
67 kgDurand
12
76 kgBassons
15
74 kgEdaleine
17
62 kgBrochard
18
68 kgBergès
20
68 kgDerepas
21
69 kgJoly
26
74 kg
1
74 kgMoreau
2
71 kgSeigneur
3
71 kgMorin
4
79 kgFinot
5
65 kgAuger
6
78 kgHeulot
7
69 kgChavanel
8
73 kgNeuville
9
85 kgMaignan
10
63 kgEstadieu
11
67 kgDurand
12
76 kgBassons
15
74 kgEdaleine
17
62 kgBrochard
18
68 kgBergès
20
68 kgDerepas
21
69 kgJoly
26
74 kg
Weight (KG) →
Result →
85
62
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | BRARD Florent | 74 |
2 | MOREAU Christophe | 71 |
3 | SEIGNEUR Eddy | 71 |
4 | MORIN Anthony | 79 |
5 | FINOT Frédéric | 65 |
6 | AUGER Guillaume | 78 |
7 | HEULOT Stéphane | 69 |
8 | CHAVANEL Sylvain | 73 |
9 | NEUVILLE Jerome | 85 |
10 | MAIGNAN Gilles | 63 |
11 | ESTADIEU Laurent | 67 |
12 | DURAND Jacky | 76 |
15 | BASSONS Christophe | 74 |
17 | EDALEINE Christophe | 62 |
18 | BROCHARD Laurent | 68 |
20 | BERGÈS Stéphane | 68 |
21 | DEREPAS David | 69 |
26 | JOLY Sébastien | 74 |