Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Seigneur
1
71 kgBarthe
2
65 kgPortal
3
70 kgGaumont
4
77 kgVaugrenard
5
72 kgRous
6
70 kgCasar
7
63 kgFinot
8
65 kgDessel
9
63 kgFlickinger
10
78 kgMoreau
11
71 kgAuger
12
78 kgDerepas
13
69 kgMorin
14
79 kgEdaleine
15
62 kgKern
16
72 kgChavanel
17
73 kgle Boulanger
18
70 kgMonier
19
75 kgBuffaz
20
64 kgLangella
23
76 kgNeuville
24
85 kgEngoulvent
27
82 kg
1
71 kgBarthe
2
65 kgPortal
3
70 kgGaumont
4
77 kgVaugrenard
5
72 kgRous
6
70 kgCasar
7
63 kgFinot
8
65 kgDessel
9
63 kgFlickinger
10
78 kgMoreau
11
71 kgAuger
12
78 kgDerepas
13
69 kgMorin
14
79 kgEdaleine
15
62 kgKern
16
72 kgChavanel
17
73 kgle Boulanger
18
70 kgMonier
19
75 kgBuffaz
20
64 kgLangella
23
76 kgNeuville
24
85 kgEngoulvent
27
82 kg
Weight (KG) →
Result →
85
62
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | SEIGNEUR Eddy | 71 |
2 | BARTHE Stéphane | 65 |
3 | PORTAL Nicolas | 70 |
4 | GAUMONT Philippe | 77 |
5 | VAUGRENARD Benoît | 72 |
6 | ROUS Didier | 70 |
7 | CASAR Sandy | 63 |
8 | FINOT Frédéric | 65 |
9 | DESSEL Cyril | 63 |
10 | FLICKINGER Andy | 78 |
11 | MOREAU Christophe | 71 |
12 | AUGER Guillaume | 78 |
13 | DEREPAS David | 69 |
14 | MORIN Anthony | 79 |
15 | EDALEINE Christophe | 62 |
16 | KERN Christophe | 72 |
17 | CHAVANEL Sylvain | 73 |
18 | LE BOULANGER Yoann | 70 |
19 | MONIER Damien | 75 |
20 | BUFFAZ Mickaël | 64 |
23 | LANGELLA Anthony | 76 |
24 | NEUVILLE Jerome | 85 |
27 | ENGOULVENT Jimmy | 82 |