Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Seigneur
1
71 kgMoreau
2
71 kgFinot
3
65 kgChavanel
4
73 kgPortal
5
70 kgMoncoutié
6
69 kgRoy
7
70 kgAuger
8
78 kgBarthe
9
65 kgVaugrenard
11
72 kgSanchez
12
75 kgTalabardon
13
67 kgKern
15
72 kgDerepas
16
69 kgLelay
17
67 kgBoucher
18
78 kgRiblon
19
65 kgDurand
21
76 kgDuret
23
62 kg
1
71 kgMoreau
2
71 kgFinot
3
65 kgChavanel
4
73 kgPortal
5
70 kgMoncoutié
6
69 kgRoy
7
70 kgAuger
8
78 kgBarthe
9
65 kgVaugrenard
11
72 kgSanchez
12
75 kgTalabardon
13
67 kgKern
15
72 kgDerepas
16
69 kgLelay
17
67 kgBoucher
18
78 kgRiblon
19
65 kgDurand
21
76 kgDuret
23
62 kg
Weight (KG) →
Result →
78
62
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | SEIGNEUR Eddy | 71 |
2 | MOREAU Christophe | 71 |
3 | FINOT Frédéric | 65 |
4 | CHAVANEL Sylvain | 73 |
5 | PORTAL Nicolas | 70 |
6 | MONCOUTIÉ David | 69 |
7 | ROY Jérémy | 70 |
8 | AUGER Guillaume | 78 |
9 | BARTHE Stéphane | 65 |
11 | VAUGRENARD Benoît | 72 |
12 | SANCHEZ Fabien | 75 |
13 | TALABARDON Yannick | 67 |
15 | KERN Christophe | 72 |
16 | DEREPAS David | 69 |
17 | LELAY David | 67 |
18 | BOUCHER David | 78 |
19 | RIBLON Christophe | 65 |
21 | DURAND Jacky | 76 |
23 | DURET Sébastien | 62 |