Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 18
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Barguil
1
61 kgAlaphilippe
7
62 kgGuillemois
11
66 kgChetout
15
70 kgMaldonado
20
57 kgCombaud
22
63 kgCabot
23
76 kgViennet
24
70 kgDémare
28
76 kgCardis
31
72 kgChevrier
32
56 kgCornu
41
66 kgPaillot
43
72 kgTurgis
44
63 kgPerez
46
70 kgBarbier
55
79 kgRaibaud
61
59 kgDaniel
68
74 kgMaurelet
70
56 kg
1
61 kgAlaphilippe
7
62 kgGuillemois
11
66 kgChetout
15
70 kgMaldonado
20
57 kgCombaud
22
63 kgCabot
23
76 kgViennet
24
70 kgDémare
28
76 kgCardis
31
72 kgChevrier
32
56 kgCornu
41
66 kgPaillot
43
72 kgTurgis
44
63 kgPerez
46
70 kgBarbier
55
79 kgRaibaud
61
59 kgDaniel
68
74 kgMaurelet
70
56 kg
Weight (KG) →
Result →
79
56
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | BARGUIL Warren | 61 |
7 | ALAPHILIPPE Julian | 62 |
11 | GUILLEMOIS Romain | 66 |
15 | CHETOUT Loïc | 70 |
20 | MALDONADO Anthony | 57 |
22 | COMBAUD Romain | 63 |
23 | CABOT Jérémy | 76 |
24 | VIENNET Emilien | 70 |
28 | DÉMARE Arnaud | 76 |
31 | CARDIS Romain | 72 |
32 | CHEVRIER Clément | 56 |
41 | CORNU Jérémy | 66 |
43 | PAILLOT Yoann | 72 |
44 | TURGIS Jimmy | 63 |
46 | PEREZ Anthony | 70 |
55 | BARBIER Rudy | 79 |
61 | RAIBAUD Jimmy | 59 |
68 | DANIEL Maxime | 74 |
70 | MAURELET Flavien | 56 |