Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Raugel
1
70 kgMontauban
5
68 kgLapeira
12
64 kgGrondin
13
77 kgVandepitte
16
80 kgLouvel
17
77 kgMainguenaud
18
63 kgNonnez
19
63 kgHuens
20
74 kgCharrin
22
67 kgBarré
23
68 kgJegat
25
59 kgLeclainche
30
65 kgLecamus-Lambert
33
79 kgChampion
39
66 kgDelacroix
50
70 kgGuenneugues
51
78 kg
1
70 kgMontauban
5
68 kgLapeira
12
64 kgGrondin
13
77 kgVandepitte
16
80 kgLouvel
17
77 kgMainguenaud
18
63 kgNonnez
19
63 kgHuens
20
74 kgCharrin
22
67 kgBarré
23
68 kgJegat
25
59 kgLeclainche
30
65 kgLecamus-Lambert
33
79 kgChampion
39
66 kgDelacroix
50
70 kgGuenneugues
51
78 kg
Weight (KG) →
Result →
80
59
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | RAUGEL Antoine | 70 |
5 | MONTAUBAN Jeremy | 68 |
12 | LAPEIRA Paul | 64 |
13 | GRONDIN Donavan | 77 |
16 | VANDEPITTE Nathan | 80 |
17 | LOUVEL Matis | 77 |
18 | MAINGUENAUD Tom | 63 |
19 | NONNEZ Théo | 63 |
20 | HUENS Rémi | 74 |
22 | CHARRIN Aloïs | 67 |
23 | BARRÉ Louis | 68 |
25 | JEGAT Jordan | 59 |
30 | LECLAINCHE Gwen | 65 |
33 | LECAMUS-LAMBERT Florentin | 79 |
39 | CHAMPION Thomas | 66 |
50 | DELACROIX Théo | 70 |
51 | GUENNEUGUES Erwann | 78 |