Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Rohde
2
75 kgSchulze
3
64 kgKoch
8
68 kgLöer
11
69 kgKämna
13
65 kgTschernoster
17
62 kgWinter
18
72 kgSchinnagel
21
68 kgDinkler
23
61 kgMandrysch
24
73 kgMeiler
28
65 kgBackofen
33
62 kgReutter
38
72 kgMattheis
39
65 kgLeinau
40
70 kgDerksen
44
58 kgTenbrock
50
74 kgWeinzheimer
54
67 kg
2
75 kgSchulze
3
64 kgKoch
8
68 kgLöer
11
69 kgKämna
13
65 kgTschernoster
17
62 kgWinter
18
72 kgSchinnagel
21
68 kgDinkler
23
61 kgMandrysch
24
73 kgMeiler
28
65 kgBackofen
33
62 kgReutter
38
72 kgMattheis
39
65 kgLeinau
40
70 kgDerksen
44
58 kgTenbrock
50
74 kgWeinzheimer
54
67 kg
Weight (KG) →
Result →
75
58
2
54
# | Rider | Weight (KG) |
---|---|---|
2 | ROHDE Leon | 75 |
3 | SCHULZE Julian | 64 |
8 | KOCH Christian | 68 |
11 | LÖER Lukas | 69 |
13 | KÄMNA Lennard | 65 |
17 | TSCHERNOSTER Jan | 62 |
18 | WINTER Laurin | 72 |
21 | SCHINNAGEL Johannes | 68 |
23 | DINKLER Jonathan | 61 |
24 | MANDRYSCH John | 73 |
28 | MEILER Lukas | 65 |
33 | BACKOFEN Moritz | 62 |
38 | REUTTER Sven | 72 |
39 | MATTHEIS Oliver | 65 |
40 | LEINAU Louis | 70 |
44 | DERKSEN Luke | 58 |
50 | TENBROCK Jonas | 74 |
54 | WEINZHEIMER Richard | 67 |