Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Brenner
1
59 kgHessmann
2
78 kgPlambeck
4
68 kgLührs
5
83 kgWilksch
6
62 kgLutter
8
65 kgOelke
11
78 kgMeyers
12
72 kgTemmen
14
66 kgGathemann
16
62 kgRedmann
17
77 kgTheiler
18
75 kgHeinrich
21
76 kgDuckert
22
68 kgSchomburg
24
76 kgBorresch
25
79 kgBurghardt
29
63 kgWilk
30
72 kgSteinhauser
31
65 kgKretschy
33
63 kg
1
59 kgHessmann
2
78 kgPlambeck
4
68 kgLührs
5
83 kgWilksch
6
62 kgLutter
8
65 kgOelke
11
78 kgMeyers
12
72 kgTemmen
14
66 kgGathemann
16
62 kgRedmann
17
77 kgTheiler
18
75 kgHeinrich
21
76 kgDuckert
22
68 kgSchomburg
24
76 kgBorresch
25
79 kgBurghardt
29
63 kgWilk
30
72 kgSteinhauser
31
65 kgKretschy
33
63 kg
Weight (KG) →
Result →
83
59
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | BRENNER Marco | 59 |
2 | HESSMANN Michel | 78 |
4 | PLAMBECK Moritz | 68 |
5 | LÜHRS Leslie | 83 |
6 | WILKSCH Hannes | 62 |
8 | LUTTER Eric | 65 |
11 | OELKE Tim | 78 |
12 | MEYERS Julien | 72 |
14 | TEMMEN Jan-Marc | 66 |
16 | GATHEMANN Albert | 62 |
17 | REDMANN Sven | 77 |
18 | THEILER Ole | 75 |
21 | HEINRICH Nicolas | 76 |
22 | DUCKERT Roman | 68 |
24 | SCHOMBURG Marten | 76 |
25 | BORRESCH Julian | 79 |
29 | BURGHARDT Luis | 63 |
30 | WILK Luke | 72 |
31 | STEINHAUSER Georg | 65 |
33 | KRETSCHY Moritz | 63 |