Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Davies
1
66 kgTanfield
3
80 kgLawless
4
72 kgGibson
7
76 kgSwift
9
75 kgCullaigh
10
78 kgDouble
11
56 kgStewart
12
70 kgHennessy
16
80 kgStedman
19
54 kgHartley
20
62 kgMckibbin
21
70 kgJones
22
75 kgRebours
23
76 kgWood
25
67 kgTremlett
28
70 kgWilliams
30
59 kgCross
32
65 kg
1
66 kgTanfield
3
80 kgLawless
4
72 kgGibson
7
76 kgSwift
9
75 kgCullaigh
10
78 kgDouble
11
56 kgStewart
12
70 kgHennessy
16
80 kgStedman
19
54 kgHartley
20
62 kgMckibbin
21
70 kgJones
22
75 kgRebours
23
76 kgWood
25
67 kgTremlett
28
70 kgWilliams
30
59 kgCross
32
65 kg
Weight (KG) →
Result →
80
54
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | DAVIES Scott | 66 |
3 | TANFIELD Charlie | 80 |
4 | LAWLESS Chris | 72 |
7 | GIBSON Matthew | 76 |
9 | SWIFT Connor | 75 |
10 | CULLAIGH Gabriel | 78 |
11 | DOUBLE Paul | 56 |
12 | STEWART Mark | 70 |
16 | HENNESSY Jacob | 80 |
19 | STEDMAN Maximilian | 54 |
20 | HARTLEY Adam | 62 |
21 | MCKIBBIN Nic | 70 |
22 | JONES Oliver | 75 |
23 | REBOURS Jack | 76 |
25 | WOOD Reece | 67 |
28 | TREMLETT Sebastian | 70 |
30 | WILLIAMS Stephen | 59 |
32 | CROSS Eugene | 65 |