Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 26
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Ganna
1
83 kgCattaneo
2
67 kgAffini
3
80 kgSobrero
4
63 kgBaroncini
5
74 kgDe Marchi
6
65 kgTiberi
7
62 kgOss
8
75 kgColleoni
9
66 kgRivi
10
72 kgMaestri
11
73 kgBevilacqua
12
75 kgRavanelli
13
66 kgBais
14
66 kgLucca
15
74 kgTagliani
16
70 kgMarengo
17
69 kgBais
18
66 kg
1
83 kgCattaneo
2
67 kgAffini
3
80 kgSobrero
4
63 kgBaroncini
5
74 kgDe Marchi
6
65 kgTiberi
7
62 kgOss
8
75 kgColleoni
9
66 kgRivi
10
72 kgMaestri
11
73 kgBevilacqua
12
75 kgRavanelli
13
66 kgBais
14
66 kgLucca
15
74 kgTagliani
16
70 kgMarengo
17
69 kgBais
18
66 kg
Weight (KG) →
Result →
83
62
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | GANNA Filippo | 83 |
2 | CATTANEO Mattia | 67 |
3 | AFFINI Edoardo | 80 |
4 | SOBRERO Matteo | 63 |
5 | BARONCINI Filippo | 74 |
6 | DE MARCHI Alessandro | 65 |
7 | TIBERI Antonio | 62 |
8 | OSS Daniel | 75 |
9 | COLLEONI Kevin | 66 |
10 | RIVI Samuele | 72 |
11 | MAESTRI Mirco | 73 |
12 | BEVILACQUA Simone | 75 |
13 | RAVANELLI Simone | 66 |
14 | BAIS Davide | 66 |
15 | LUCCA Riccardo | 74 |
16 | TAGLIANI Filippo | 70 |
17 | MARENGO Umberto | 69 |
18 | BAIS Mattia | 66 |