Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Westra
1
74 kgBoom
2
75 kgTerpstra
3
75 kgClement
4
66 kgTjallingii
5
81 kgKelderman
6
65 kgDumoulin
7
69 kgKeizer
8
72 kgMouris
9
91 kgBeukeboom
10
88 kgde Vries
11
70 kgFlens
12
82 kgvan Winden
13
70 kgHuizenga
14
72 kgOostlander
17
78 kgBol
18
71 kgEefting-Bloem
27
75 kgMinnaard
28
65 kgvan Lakerveld
36
85 kg
1
74 kgBoom
2
75 kgTerpstra
3
75 kgClement
4
66 kgTjallingii
5
81 kgKelderman
6
65 kgDumoulin
7
69 kgKeizer
8
72 kgMouris
9
91 kgBeukeboom
10
88 kgde Vries
11
70 kgFlens
12
82 kgvan Winden
13
70 kgHuizenga
14
72 kgOostlander
17
78 kgBol
18
71 kgEefting-Bloem
27
75 kgMinnaard
28
65 kgvan Lakerveld
36
85 kg
Weight (KG) →
Result →
91
65
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | WESTRA Lieuwe | 74 |
2 | BOOM Lars | 75 |
3 | TERPSTRA Niki | 75 |
4 | CLEMENT Stef | 66 |
5 | TJALLINGII Maarten | 81 |
6 | KELDERMAN Wilco | 65 |
7 | DUMOULIN Tom | 69 |
8 | KEIZER Martijn | 72 |
9 | MOURIS Jens | 91 |
10 | BEUKEBOOM Dion | 88 |
11 | DE VRIES Berden | 70 |
12 | FLENS Rick | 82 |
13 | VAN WINDEN Dennis | 70 |
14 | HUIZENGA Jenning | 72 |
17 | OOSTLANDER Sander | 78 |
18 | BOL Jetse | 71 |
27 | EEFTING-BLOEM Roy | 75 |
28 | MINNAARD Marco | 65 |
36 | VAN LAKERVELD Erik | 85 |