Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 11
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Dumoulin
1
69 kgvan Emden
2
78 kgKelderman
3
65 kgLammertink
4
68 kgSchoonbroodt
5
78 kgPoels
6
66 kgBouwman
7
60 kgRiesebeek
9
78 kgMouris
10
91 kgKoning
11
77 kgvan Zandbeek
12
72 kgVeldt
13
78 kgTusveld
14
70 kgGerts
17
71 kgEefting-Bloem
19
75 kgvan der Meer
23
82 kgHandgraaf
26
66 kgvan Lakerveld
27
85 kg
1
69 kgvan Emden
2
78 kgKelderman
3
65 kgLammertink
4
68 kgSchoonbroodt
5
78 kgPoels
6
66 kgBouwman
7
60 kgRiesebeek
9
78 kgMouris
10
91 kgKoning
11
77 kgvan Zandbeek
12
72 kgVeldt
13
78 kgTusveld
14
70 kgGerts
17
71 kgEefting-Bloem
19
75 kgvan der Meer
23
82 kgHandgraaf
26
66 kgvan Lakerveld
27
85 kg
Weight (KG) →
Result →
91
60
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | DUMOULIN Tom | 69 |
2 | VAN EMDEN Jos | 78 |
3 | KELDERMAN Wilco | 65 |
4 | LAMMERTINK Steven | 68 |
5 | SCHOONBROODT Bob | 78 |
6 | POELS Wout | 66 |
7 | BOUWMAN Koen | 60 |
9 | RIESEBEEK Oscar | 78 |
10 | MOURIS Jens | 91 |
11 | KONING Peter | 77 |
12 | VAN ZANDBEEK Ronan | 72 |
13 | VELDT Tim | 78 |
14 | TUSVELD Martijn | 70 |
17 | GERTS Floris | 71 |
19 | EEFTING-BLOEM Roy | 75 |
23 | VAN DER MEER Nick | 82 |
26 | HANDGRAAF Sjors | 66 |
27 | VAN LAKERVELD Erik | 85 |