Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 41
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Dumoulin
1
69 kgClement
2
66 kgGesink
3
70 kgvan Emden
4
78 kgBouwman
5
60 kgOomen
6
65 kgTusveld
7
70 kgOlivier
8
64 kgLammertink
9
68 kgBeukeboom
10
88 kgGerts
11
71 kgRiesebeek
12
78 kgHavik
13
73 kgde Vries
14
70 kgGroen
16
70.5 kgKoning
17
77 kgEising
20
80 kgGoos
22
65 kgvan Zandbeek
23
72 kgBugter
26
81 kgHandgraaf
38
66 kgvan Lakerveld
41
85 kgMouris
44
91 kg
1
69 kgClement
2
66 kgGesink
3
70 kgvan Emden
4
78 kgBouwman
5
60 kgOomen
6
65 kgTusveld
7
70 kgOlivier
8
64 kgLammertink
9
68 kgBeukeboom
10
88 kgGerts
11
71 kgRiesebeek
12
78 kgHavik
13
73 kgde Vries
14
70 kgGroen
16
70.5 kgKoning
17
77 kgEising
20
80 kgGoos
22
65 kgvan Zandbeek
23
72 kgBugter
26
81 kgHandgraaf
38
66 kgvan Lakerveld
41
85 kgMouris
44
91 kg
Weight (KG) →
Result →
91
60
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | DUMOULIN Tom | 69 |
2 | CLEMENT Stef | 66 |
3 | GESINK Robert | 70 |
4 | VAN EMDEN Jos | 78 |
5 | BOUWMAN Koen | 60 |
6 | OOMEN Sam | 65 |
7 | TUSVELD Martijn | 70 |
8 | OLIVIER Daan | 64 |
9 | LAMMERTINK Steven | 68 |
10 | BEUKEBOOM Dion | 88 |
11 | GERTS Floris | 71 |
12 | RIESEBEEK Oscar | 78 |
13 | HAVIK Piotr | 73 |
14 | DE VRIES Berden | 70 |
16 | GROEN Ike | 70.5 |
17 | KONING Peter | 77 |
20 | EISING Tijmen | 80 |
22 | GOOS Marc | 65 |
23 | VAN ZANDBEEK Ronan | 72 |
26 | BUGTER Luuc | 81 |
38 | HANDGRAAF Sjors | 66 |
41 | VAN LAKERVELD Erik | 85 |
44 | MOURIS Jens | 91 |