Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 57
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Dumoulin
1
69 kgLangeveld
2
67 kgBouwman
3
60 kgSchelling
4
66 kgvan den Berg
5
78 kgReinders
6
78.1 kgvan der Tuuk
9
64 kgMegens
12
65 kgArensman
14
69.5 kgStravers
20
73 kgVan Der Velde
22
79 kgWolffenbuttel
23
79 kgZwanenburg
24
76 kgHandgraaf
30
66 kgDissel
38
77 kgArts
44
78 kg
1
69 kgLangeveld
2
67 kgBouwman
3
60 kgSchelling
4
66 kgvan den Berg
5
78 kgReinders
6
78.1 kgvan der Tuuk
9
64 kgMegens
12
65 kgArensman
14
69.5 kgStravers
20
73 kgVan Der Velde
22
79 kgWolffenbuttel
23
79 kgZwanenburg
24
76 kgHandgraaf
30
66 kgDissel
38
77 kgArts
44
78 kg
Weight (KG) →
Result →
79
60
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | DUMOULIN Tom | 69 |
2 | LANGEVELD Sebastian | 67 |
3 | BOUWMAN Koen | 60 |
4 | SCHELLING Ide | 66 |
5 | VAN DEN BERG Julius | 78 |
6 | REINDERS Elmar | 78.1 |
9 | VAN DER TUUK Danny | 64 |
12 | MEGENS Brian | 65 |
14 | ARENSMAN Thymen | 69.5 |
20 | STRAVERS Jarri | 73 |
22 | VAN DER VELDE Jurjen | 79 |
23 | WOLFFENBUTTEL Nils | 79 |
24 | ZWANENBURG Cris | 76 |
30 | HANDGRAAF Sjors | 66 |
38 | DISSEL Bram | 77 |
44 | ARTS Tim | 78 |