Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
van Emden
1
78 kgHoole
2
81 kgBax
3
78 kgMollema
5
64 kgvan den Broek
6
70 kgvan Dijke
7
74 kgMegens
8
65 kgKelderman
9
65 kgVliek
10
67 kgZijlaard
11
73 kgvan der Tuuk
12
64 kgvan der Lijke
13
61 kgVeling
15
81 kgArensman
16
68 kgVisser
18
75 kgTulner
20
62 kgArts
24
78 kgChristen
28
82 kgKras
29
73 kgHandgraaf
32
66 kg
1
78 kgHoole
2
81 kgBax
3
78 kgMollema
5
64 kgvan den Broek
6
70 kgvan Dijke
7
74 kgMegens
8
65 kgKelderman
9
65 kgVliek
10
67 kgZijlaard
11
73 kgvan der Tuuk
12
64 kgvan der Lijke
13
61 kgVeling
15
81 kgArensman
16
68 kgVisser
18
75 kgTulner
20
62 kgArts
24
78 kgChristen
28
82 kgKras
29
73 kgHandgraaf
32
66 kg
Weight (KG) →
Result →
82
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | VAN EMDEN Jos | 78 |
2 | HOOLE Daan | 81 |
3 | BAX Sjoerd | 78 |
5 | MOLLEMA Bauke | 64 |
6 | VAN DEN BROEK Frank | 70 |
7 | VAN DIJKE Tim | 74 |
8 | MEGENS Brian | 65 |
9 | KELDERMAN Wilco | 65 |
10 | VLIEK Mike | 67 |
11 | ZIJLAARD Maikel | 73 |
12 | VAN DER TUUK Danny | 64 |
13 | VAN DER LIJKE Nick | 61 |
15 | VELING Quinten | 81 |
16 | ARENSMAN Thymen | 68 |
18 | VISSER Guillaume | 75 |
20 | TULNER Rens | 62 |
24 | ARTS Tim | 78 |
28 | CHRISTEN Tim | 82 |
29 | KRAS Bram | 73 |
32 | HANDGRAAF Sjors | 66 |