Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hoole
1
81 kgvan Dijke
2
74 kgBax
3
78 kgMegens
6
65 kgMolenaar
7
63 kgMollema
8
64 kgSeverijn
9
85 kgReinderink
10
67 kgVliek
11
67 kgVeling
14
81 kgMarsman
15
75 kgvan Sintmaartensdijk
16
77 kgVisser
18
75 kgvan den Dool
19
68 kgRasenberg
20
78 kgHaest
26
70 kgVan Den Berg
27
77 kgArts
30
78 kgKras
34
73 kg
1
81 kgvan Dijke
2
74 kgBax
3
78 kgMegens
6
65 kgMolenaar
7
63 kgMollema
8
64 kgSeverijn
9
85 kgReinderink
10
67 kgVliek
11
67 kgVeling
14
81 kgMarsman
15
75 kgvan Sintmaartensdijk
16
77 kgVisser
18
75 kgvan den Dool
19
68 kgRasenberg
20
78 kgHaest
26
70 kgVan Den Berg
27
77 kgArts
30
78 kgKras
34
73 kg
Weight (KG) →
Result →
85
63
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | HOOLE Daan | 81 |
2 | VAN DIJKE Mick | 74 |
3 | BAX Sjoerd | 78 |
6 | MEGENS Brian | 65 |
7 | MOLENAAR Alex | 63 |
8 | MOLLEMA Bauke | 64 |
9 | SEVERIJN Thom | 85 |
10 | REINDERINK Pepijn | 67 |
11 | VLIEK Mike | 67 |
14 | VELING Quinten | 81 |
15 | MARSMAN Tim | 75 |
16 | VAN SINTMAARTENSDIJK Roel | 77 |
18 | VISSER Guillaume | 75 |
19 | VAN DEN DOOL Jens | 68 |
20 | RASENBERG Martijn | 78 |
26 | HAEST Jasper | 70 |
27 | VAN DEN BERG Maarten | 77 |
30 | ARTS Tim | 78 |
34 | KRAS Bram | 73 |