Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Verboom
1
84 kgArensman
2
69.5 kgHoole
3
81 kgZijlaard
4
73 kgMaas
7
70 kgMarsman
8
75 kgde Jong
10
72 kgvan der Tuuk
11
64 kgBootsveld
12
75 kgBrabander
13
80 kgMolenaar
14
63 kgDeelstra
19
66 kgKroonen
21
79 kgVeling
22
81 kgNaberman
24
70 kgBlummel
27
76 kgVan Gestel
30
64 kgKoster
32
65 kgBroex
33
75 kg
1
84 kgArensman
2
69.5 kgHoole
3
81 kgZijlaard
4
73 kgMaas
7
70 kgMarsman
8
75 kgde Jong
10
72 kgvan der Tuuk
11
64 kgBootsveld
12
75 kgBrabander
13
80 kgMolenaar
14
63 kgDeelstra
19
66 kgKroonen
21
79 kgVeling
22
81 kgNaberman
24
70 kgBlummel
27
76 kgVan Gestel
30
64 kgKoster
32
65 kgBroex
33
75 kg
Weight (KG) →
Result →
84
63
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | VERBOOM Minne | 84 |
2 | ARENSMAN Thymen | 69.5 |
3 | HOOLE Daan | 81 |
4 | ZIJLAARD Maikel | 73 |
7 | MAAS Edo | 70 |
8 | MARSMAN Tim | 75 |
10 | DE JONG Timo | 72 |
11 | VAN DER TUUK Danny | 64 |
12 | BOOTSVELD Jelle | 75 |
13 | BRABANDER Nick | 80 |
14 | MOLENAAR Alex | 63 |
19 | DEELSTRA Huub | 66 |
21 | KROONEN Max | 79 |
22 | VELING Quinten | 81 |
24 | NABERMAN Tim | 70 |
27 | BLUMMEL Robin | 76 |
30 | VAN GESTEL Luuk | 64 |
32 | KOSTER Adne | 65 |
33 | BROEX Victor | 75 |