Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Boven
4
62 kgMarsman
5
75 kgDeelstra
6
66 kgKrul
7
75 kgHohmann
9
73 kgVan Gestel
13
64 kgLoohuis
17
82 kgMaas
19
70 kgvan Ekeren
20
70 kgPluimers
21
67 kgvan Sintmaartensdijk
23
77 kgKooij
24
72 kgBrabander
28
80 kgBroex
29
75 kgKroonen
32
79 kgBaak
35
73 kgDuijvesteijn
36
73 kgZwaan
37
57 kg
4
62 kgMarsman
5
75 kgDeelstra
6
66 kgKrul
7
75 kgHohmann
9
73 kgVan Gestel
13
64 kgLoohuis
17
82 kgMaas
19
70 kgvan Ekeren
20
70 kgPluimers
21
67 kgvan Sintmaartensdijk
23
77 kgKooij
24
72 kgBrabander
28
80 kgBroex
29
75 kgKroonen
32
79 kgBaak
35
73 kgDuijvesteijn
36
73 kgZwaan
37
57 kg
Weight (KG) →
Result →
82
57
4
37
# | Rider | Weight (KG) |
---|---|---|
4 | BOVEN Lars | 62 |
5 | MARSMAN Tim | 75 |
6 | DEELSTRA Huub | 66 |
7 | KRUL Wessel | 75 |
9 | HOHMANN Lars | 73 |
13 | VAN GESTEL Luuk | 64 |
17 | LOOHUIS Lars | 82 |
19 | MAAS Edo | 70 |
20 | VAN EKEREN Niels | 70 |
21 | PLUIMERS Rick | 67 |
23 | VAN SINTMAARTENSDIJK Roel | 77 |
24 | KOOIJ Olav | 72 |
28 | BRABANDER Nick | 80 |
29 | BROEX Victor | 75 |
32 | KROONEN Max | 79 |
35 | BAAK Jord | 73 |
36 | DUIJVESTEIJN Roy | 73 |
37 | ZWAAN Wouter | 57 |