Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Godrie
1
74 kgGroenewegen
2
70 kgLammertink
3
68 kgBrusselman
4
76 kgBakker
5
74.5 kgvan Poppel
13
82 kgKerkhof
16
76 kgBouwman
19
60 kgvan der Hoorn
21
73 kgde Man
31
68 kgBugter
36
81 kgSlik
38
71 kgvan Dongen
44
75 kgRoosen
45
78 kgHofstede
51
73 kgde Kleijn
52
68 kgvan Empel
57
64 kg
1
74 kgGroenewegen
2
70 kgLammertink
3
68 kgBrusselman
4
76 kgBakker
5
74.5 kgvan Poppel
13
82 kgKerkhof
16
76 kgBouwman
19
60 kgvan der Hoorn
21
73 kgde Man
31
68 kgBugter
36
81 kgSlik
38
71 kgvan Dongen
44
75 kgRoosen
45
78 kgHofstede
51
73 kgde Kleijn
52
68 kgvan Empel
57
64 kg
Weight (KG) →
Result →
82
60
1
57
# | Rider | Weight (KG) |
---|---|---|
1 | GODRIE Stan | 74 |
2 | GROENEWEGEN Dylan | 70 |
3 | LAMMERTINK Steven | 68 |
4 | BRUSSELMAN Twan | 76 |
5 | BAKKER Dennis | 74.5 |
13 | VAN POPPEL Danny | 82 |
16 | KERKHOF Tim | 76 |
19 | BOUWMAN Koen | 60 |
21 | VAN DER HOORN Taco | 73 |
31 | DE MAN Jaap | 68 |
36 | BUGTER Luuc | 81 |
38 | SLIK Ivar | 71 |
44 | VAN DONGEN Ricardo | 75 |
45 | ROOSEN Timo | 78 |
51 | HOFSTEDE Lennard | 73 |
52 | DE KLEIJN Arvid | 68 |
57 | VAN EMPEL Etienne | 64 |