Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.1 * weight + 262
This means that on average for every extra kilogram weight a rider loses -3.1 positions in the result.
van der Poel
1
75 kgLooij
5
75 kgJakobsen
7
78 kgBudding
9
74 kgBol
12
83 kgDoets
13
73 kgCornelisse
15
73.5 kgWouters
22
67 kgvan der Kooij
26
70 kgSloof
27
70 kgJanssen
31
76 kgvan den Berg
32
78 kgWijkel
36
73 kgTietema
37
74 kgde Vries
42
66 kgMaas
56
70 kgCeli
65
76 kgTimmermans
70
72 kgTalen
71
76 kgOnderwater
82
72 kgOomen
89
65 kgKrul
103
68 kg
1
75 kgLooij
5
75 kgJakobsen
7
78 kgBudding
9
74 kgBol
12
83 kgDoets
13
73 kgCornelisse
15
73.5 kgWouters
22
67 kgvan der Kooij
26
70 kgSloof
27
70 kgJanssen
31
76 kgvan den Berg
32
78 kgWijkel
36
73 kgTietema
37
74 kgde Vries
42
66 kgMaas
56
70 kgCeli
65
76 kgTimmermans
70
72 kgTalen
71
76 kgOnderwater
82
72 kgOomen
89
65 kgKrul
103
68 kg
Weight (KG) →
Result →
83
65
1
103
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
5 | LOOIJ André | 75 |
7 | JAKOBSEN Fabio | 78 |
9 | BUDDING Martijn | 74 |
12 | BOL Cees | 83 |
13 | DOETS Marco | 73 |
15 | CORNELISSE Mitchell | 73.5 |
22 | WOUTERS Sieben | 67 |
26 | VAN DER KOOIJ Bas | 70 |
27 | SLOOF Jordi | 70 |
31 | JANSSEN Adriaan | 76 |
32 | VAN DEN BERG Julius | 78 |
36 | WIJKEL Stan | 73 |
37 | TIETEMA Bas | 74 |
42 | DE VRIES Hartthijs | 66 |
56 | MAAS Jan | 70 |
65 | CELI Abe | 76 |
70 | TIMMERMANS Justin | 72 |
71 | TALEN Jordi | 76 |
82 | ONDERWATER Coen | 72 |
89 | OOMEN Sam | 65 |
103 | KRUL Stef | 68 |