Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
van Sintmaartensdijk
1
77 kgvan der Horst
2
62 kgDekker
3
80 kgEekhoff
4
75 kgHoole
6
81 kgRasch
12
71 kgvan den Berg
15
73 kgvan den Dool
18
68 kgTulner
20
62 kgWeulink
31
62 kgWijfje
37
66 kgArensman
40
68 kgNaberman
42
70 kgBlummel
48
76 kgVerboom
49
84 kgZijlaard
51
73 kgOttevanger
52
74 kgSchelling
54
66 kgOreel
58
72 kgVeling
65
81 kgvan der Tuuk
69
64 kgde Jong
73
72 kg
1
77 kgvan der Horst
2
62 kgDekker
3
80 kgEekhoff
4
75 kgHoole
6
81 kgRasch
12
71 kgvan den Berg
15
73 kgvan den Dool
18
68 kgTulner
20
62 kgWeulink
31
62 kgWijfje
37
66 kgArensman
40
68 kgNaberman
42
70 kgBlummel
48
76 kgVerboom
49
84 kgZijlaard
51
73 kgOttevanger
52
74 kgSchelling
54
66 kgOreel
58
72 kgVeling
65
81 kgvan der Tuuk
69
64 kgde Jong
73
72 kg
Weight (KG) →
Result →
84
62
1
73
# | Rider | Weight (KG) |
---|---|---|
1 | VAN SINTMAARTENSDIJK Daan | 77 |
2 | VAN DER HORST Dennis | 62 |
3 | DEKKER David | 80 |
4 | EEKHOFF Nils | 75 |
6 | HOOLE Daan | 81 |
12 | RASCH Jesper | 71 |
15 | VAN DEN BERG Marijn | 73 |
18 | VAN DEN DOOL Jens | 68 |
20 | TULNER Rens | 62 |
31 | WEULINK Meindert | 62 |
37 | WIJFJE Tom | 66 |
40 | ARENSMAN Thymen | 68 |
42 | NABERMAN Tim | 70 |
48 | BLUMMEL Robin | 76 |
49 | VERBOOM Minne | 84 |
51 | ZIJLAARD Maikel | 73 |
52 | OTTEVANGER Bas | 74 |
54 | SCHELLING Ide | 66 |
58 | OREEL Lars | 72 |
65 | VELING Quinten | 81 |
69 | VAN DER TUUK Danny | 64 |
73 | DE JONG Timo | 72 |