Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 74
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kooij
4
72 kgArtz
7
71 kgDrost
9
57 kgHohmann
10
73 kgvan Sintmaartensdijk
13
77 kgReinderink
16
67 kgRasenberg
17
78 kgSytema
18
78 kgLamberink
24
73 kgMijnsbergen
26
68 kgStuiver
31
70 kgSchuch
36
64 kgDuijvesteijn
42
73 kgZwaan
47
57 kgRonhaar
52
60 kgde Heij
65
78 kgLubbers
69
68 kgVan Den Bergh
72
68 kgKrijnsen
75
73 kgPolet
76
70 kgBoven
79
62 kgde Bruin
83
64 kgLuijten
84
79 kg
4
72 kgArtz
7
71 kgDrost
9
57 kgHohmann
10
73 kgvan Sintmaartensdijk
13
77 kgReinderink
16
67 kgRasenberg
17
78 kgSytema
18
78 kgLamberink
24
73 kgMijnsbergen
26
68 kgStuiver
31
70 kgSchuch
36
64 kgDuijvesteijn
42
73 kgZwaan
47
57 kgRonhaar
52
60 kgde Heij
65
78 kgLubbers
69
68 kgVan Den Bergh
72
68 kgKrijnsen
75
73 kgPolet
76
70 kgBoven
79
62 kgde Bruin
83
64 kgLuijten
84
79 kg
Weight (KG) →
Result →
79
57
4
84
# | Rider | Weight (KG) |
---|---|---|
4 | KOOIJ Olav | 72 |
7 | ARTZ Huub | 71 |
9 | DROST Melvin | 57 |
10 | HOHMANN Lars | 73 |
13 | VAN SINTMAARTENSDIJK Roel | 77 |
16 | REINDERINK Pepijn | 67 |
17 | RASENBERG Martijn | 78 |
18 | SYTEMA Jesse | 78 |
24 | LAMBERINK Steyn | 73 |
26 | MIJNSBERGEN Thomas | 68 |
31 | STUIVER Ard | 70 |
36 | SCHUCH Mike | 64 |
42 | DUIJVESTEIJN Roy | 73 |
47 | ZWAAN Wouter | 57 |
52 | RONHAAR Pim | 60 |
65 | DE HEIJ Joppe | 78 |
69 | LUBBERS Christiaan | 68 |
72 | VAN DEN BERGH Stan | 68 |
75 | KRIJNSEN Jelte | 73 |
76 | POLET Casper | 70 |
79 | BOVEN Lars | 62 |
83 | DE BRUIN Tjalle | 64 |
84 | LUIJTEN Noel | 79 |