Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 65
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Del Grosso
1
70 kgJanssen
2
67 kgAbma
4
86 kgLouwerensen
6
67 kgKramer
8
74 kgde Jong
10
64 kgde Gruijter
13
71 kgDuba
14
85 kgVeenings
15
79 kgReinderink
22
59 kgKoning
23
72 kgKonings
24
69 kgvan Dorp
28
76 kgvan der Meulen
31
67 kgSmulders
32
69 kgSchaper
39
69 kgKranenburg
51
62 kg
1
70 kgJanssen
2
67 kgAbma
4
86 kgLouwerensen
6
67 kgKramer
8
74 kgde Jong
10
64 kgde Gruijter
13
71 kgDuba
14
85 kgVeenings
15
79 kgReinderink
22
59 kgKoning
23
72 kgKonings
24
69 kgvan Dorp
28
76 kgvan der Meulen
31
67 kgSmulders
32
69 kgSchaper
39
69 kgKranenburg
51
62 kg
Weight (KG) →
Result →
86
59
1
51
# | Rider | Weight (KG) |
---|---|---|
1 | DEL GROSSO Tibor | 70 |
2 | JANSSEN Lucas | 67 |
4 | ABMA Elmar | 86 |
6 | LOUWERENSEN Tijn | 67 |
8 | KRAMER Jesse | 74 |
10 | DE JONG Nino | 64 |
13 | DE GRUIJTER Joren | 71 |
14 | DUBA Maxime | 85 |
15 | VEENINGS Pepijn | 79 |
22 | REINDERINK Joris | 59 |
23 | KONING Stef | 72 |
24 | KONINGS Roan | 69 |
28 | VAN DORP Vincent | 76 |
31 | VAN DER MEULEN Max | 67 |
32 | SMULDERS Vik | 69 |
39 | SCHAPER Marijn | 69 |
51 | KRANENBURG Joris | 62 |