Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Lammertink
1
68 kgTeunissen
2
73 kgRiesebeek
5
78 kgOomen
6
65 kgReinders
7
78.1 kgKrul
8
68 kgTusveld
9
70 kgJanssen
10
76 kgRoosen
11
78 kgBol
13
83 kgOttema
15
77 kgGerts
16
71 kgHofstede
17
73 kgSlik
21
71 kgBudding
25
74 kgBakker
26
74.5 kgHavik
29
73 kgKerkhof
30
76 kgvan der Burg
32
72 kgvan Schip
33
84 kg
1
68 kgTeunissen
2
73 kgRiesebeek
5
78 kgOomen
6
65 kgReinders
7
78.1 kgKrul
8
68 kgTusveld
9
70 kgJanssen
10
76 kgRoosen
11
78 kgBol
13
83 kgOttema
15
77 kgGerts
16
71 kgHofstede
17
73 kgSlik
21
71 kgBudding
25
74 kgBakker
26
74.5 kgHavik
29
73 kgKerkhof
30
76 kgvan der Burg
32
72 kgvan Schip
33
84 kg
Weight (KG) →
Result →
84
65
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | LAMMERTINK Steven | 68 |
2 | TEUNISSEN Mike | 73 |
5 | RIESEBEEK Oscar | 78 |
6 | OOMEN Sam | 65 |
7 | REINDERS Elmar | 78.1 |
8 | KRUL Stef | 68 |
9 | TUSVELD Martijn | 70 |
10 | JANSSEN Adriaan | 76 |
11 | ROOSEN Timo | 78 |
13 | BOL Cees | 83 |
15 | OTTEMA Rick | 77 |
16 | GERTS Floris | 71 |
17 | HOFSTEDE Lennard | 73 |
21 | SLIK Ivar | 71 |
25 | BUDDING Martijn | 74 |
26 | BAKKER Dennis | 74.5 |
29 | HAVIK Piotr | 73 |
30 | KERKHOF Tim | 76 |
32 | VAN DER BURG Joost | 72 |
33 | VAN SCHIP Jan-Willem | 84 |