Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
van den Berg
1
78 kgEenkhoorn
2
72 kgTietema
3
74 kgde Vries
4
66 kgKrul
6
68 kgKooistra
10
74 kgSchelling
11
66 kgTulner
12
62 kgEekhoff
13
75 kgBax
14
78 kgBouwmans
15
64 kgJanssen
16
76 kgMengoulas
17
66 kgvan den Dool
19
68 kgScholten
21
74 kgWelten
29
81 kgvan der Kooij
37
70 kgOnderwater
38
72 kg
1
78 kgEenkhoorn
2
72 kgTietema
3
74 kgde Vries
4
66 kgKrul
6
68 kgKooistra
10
74 kgSchelling
11
66 kgTulner
12
62 kgEekhoff
13
75 kgBax
14
78 kgBouwmans
15
64 kgJanssen
16
76 kgMengoulas
17
66 kgvan den Dool
19
68 kgScholten
21
74 kgWelten
29
81 kgvan der Kooij
37
70 kgOnderwater
38
72 kg
Weight (KG) →
Result →
81
62
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DEN BERG Julius | 78 |
2 | EENKHOORN Pascal | 72 |
3 | TIETEMA Bas | 74 |
4 | DE VRIES Hartthijs | 66 |
6 | KRUL Stef | 68 |
10 | KOOISTRA Marten | 74 |
11 | SCHELLING Ide | 66 |
12 | TULNER Rens | 62 |
13 | EEKHOFF Nils | 75 |
14 | BAX Sjoerd | 78 |
15 | BOUWMANS Dylan | 64 |
16 | JANSSEN Adriaan | 76 |
17 | MENGOULAS Alex | 66 |
19 | VAN DEN DOOL Jens | 68 |
21 | SCHOLTEN Wiebe | 74 |
29 | WELTEN Bram | 81 |
37 | VAN DER KOOIJ Bas | 70 |
38 | ONDERWATER Coen | 72 |