Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
de Vries
1
66 kgEekhoff
2
75 kgHoole
3
81 kgSchelling
5
66 kgBurger
6
74 kgBlummel
7
76 kgMengoulas
8
66 kgKooistra
9
74 kgMaas
10
70 kgvan den Berg
12
78 kgBax
13
78 kgVerboom
20
84 kgvan der Tuuk
21
64 kgBootsveld
22
75 kgOreel
23
72 kgOttevanger
25
74 kgde Jong
26
72 kgBouwmans
27
64 kgDekker
30
80 kgVeling
31
81 kgHaest
32
70 kgNaberman
33
70 kgJansen
35
63 kg
1
66 kgEekhoff
2
75 kgHoole
3
81 kgSchelling
5
66 kgBurger
6
74 kgBlummel
7
76 kgMengoulas
8
66 kgKooistra
9
74 kgMaas
10
70 kgvan den Berg
12
78 kgBax
13
78 kgVerboom
20
84 kgvan der Tuuk
21
64 kgBootsveld
22
75 kgOreel
23
72 kgOttevanger
25
74 kgde Jong
26
72 kgBouwmans
27
64 kgDekker
30
80 kgVeling
31
81 kgHaest
32
70 kgNaberman
33
70 kgJansen
35
63 kg
Weight (KG) →
Result →
84
63
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | DE VRIES Hartthijs | 66 |
2 | EEKHOFF Nils | 75 |
3 | HOOLE Daan | 81 |
5 | SCHELLING Ide | 66 |
6 | BURGER Sven | 74 |
7 | BLUMMEL Robin | 76 |
8 | MENGOULAS Alex | 66 |
9 | KOOISTRA Marten | 74 |
10 | MAAS Jan | 70 |
12 | VAN DEN BERG Julius | 78 |
13 | BAX Sjoerd | 78 |
20 | VERBOOM Minne | 84 |
21 | VAN DER TUUK Danny | 64 |
22 | BOOTSVELD Jelle | 75 |
23 | OREEL Lars | 72 |
25 | OTTEVANGER Bas | 74 |
26 | DE JONG Timo | 72 |
27 | BOUWMANS Dylan | 64 |
30 | DEKKER David | 80 |
31 | VELING Quinten | 81 |
32 | HAEST Jasper | 70 |
33 | NABERMAN Tim | 70 |
35 | JANSEN Edward | 63 |