Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Langeveld
1
67 kgHonig
2
61 kgHoogerland
3
65 kgFlens
6
82 kgBoom
7
75 kgGoesinnen
8
75 kgReus
9
70 kgLeezer
10
76 kgTerpstra
13
75 kgVeelers
14
75 kgMaaskant
15
76 kgvan Leijen
18
73 kgvan Emden
19
78 kgDuijn
22
73 kgvan Groen
25
69 kgRuijgh
28
64 kgGesink
29
70 kgde Baat
35
66 kgde Jonge
55
65 kgStamsnijder
89
76 kgvan Amerongen
91
70 kgde Maar
93
70 kgStroetinga
100
69 kg
1
67 kgHonig
2
61 kgHoogerland
3
65 kgFlens
6
82 kgBoom
7
75 kgGoesinnen
8
75 kgReus
9
70 kgLeezer
10
76 kgTerpstra
13
75 kgVeelers
14
75 kgMaaskant
15
76 kgvan Leijen
18
73 kgvan Emden
19
78 kgDuijn
22
73 kgvan Groen
25
69 kgRuijgh
28
64 kgGesink
29
70 kgde Baat
35
66 kgde Jonge
55
65 kgStamsnijder
89
76 kgvan Amerongen
91
70 kgde Maar
93
70 kgStroetinga
100
69 kg
Weight (KG) →
Result →
82
61
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | LANGEVELD Sebastian | 67 |
2 | HONIG Reinier | 61 |
3 | HOOGERLAND Johnny | 65 |
6 | FLENS Rick | 82 |
7 | BOOM Lars | 75 |
8 | GOESINNEN Floris | 75 |
9 | REUS Kai | 70 |
10 | LEEZER Tom | 76 |
13 | TERPSTRA Niki | 75 |
14 | VEELERS Tom | 75 |
15 | MAASKANT Martijn | 76 |
18 | VAN LEIJEN Joost | 73 |
19 | VAN EMDEN Jos | 78 |
22 | DUIJN Huub | 73 |
25 | VAN GROEN Arnoud | 69 |
28 | RUIJGH Rob | 64 |
29 | GESINK Robert | 70 |
35 | DE BAAT Arjen | 66 |
55 | DE JONGE Maarten | 65 |
89 | STAMSNIJDER Tom | 76 |
91 | VAN AMERONGEN Thijs | 70 |
93 | DE MAAR Marc | 70 |
100 | STROETINGA Wim | 69 |