Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
van Baarle
1
78 kgTeunissen
2
73 kgSchoonbroodt
4
78 kgvan der Lijke
5
61 kgBouwman
7
60 kgGodrie
8
74 kgKerkhof
12
76 kgHofstede
13
73 kgAriesen
14
70 kgGroenewegen
16
70 kgvan der Haar
17
58 kgvan Ginneken
18
72 kgMeijers
19
68 kgGerts
20
71 kgRoosen
21
78 kgBrusselman
22
76 kgvan Goethem
23
77 kgBosman
26
68 kgBugter
27
81 kgMeijers
32
70 kgde Greef
34
65 kgRiesebeek
35
78 kg
1
78 kgTeunissen
2
73 kgSchoonbroodt
4
78 kgvan der Lijke
5
61 kgBouwman
7
60 kgGodrie
8
74 kgKerkhof
12
76 kgHofstede
13
73 kgAriesen
14
70 kgGroenewegen
16
70 kgvan der Haar
17
58 kgvan Ginneken
18
72 kgMeijers
19
68 kgGerts
20
71 kgRoosen
21
78 kgBrusselman
22
76 kgvan Goethem
23
77 kgBosman
26
68 kgBugter
27
81 kgMeijers
32
70 kgde Greef
34
65 kgRiesebeek
35
78 kg
Weight (KG) →
Result →
81
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | VAN BAARLE Dylan | 78 |
2 | TEUNISSEN Mike | 73 |
4 | SCHOONBROODT Bob | 78 |
5 | VAN DER LIJKE Nick | 61 |
7 | BOUWMAN Koen | 60 |
8 | GODRIE Stan | 74 |
12 | KERKHOF Tim | 76 |
13 | HOFSTEDE Lennard | 73 |
14 | ARIESEN Tim | 70 |
16 | GROENEWEGEN Dylan | 70 |
17 | VAN DER HAAR Lars | 58 |
18 | VAN GINNEKEN Sjoerd | 72 |
19 | MEIJERS Jeroen | 68 |
20 | GERTS Floris | 71 |
21 | ROOSEN Timo | 78 |
22 | BRUSSELMAN Twan | 76 |
23 | VAN GOETHEM Brian | 77 |
26 | BOSMAN Gert-Jan | 68 |
27 | BUGTER Luuc | 81 |
32 | MEIJERS Daan | 70 |
34 | DE GREEF Robbert | 65 |
35 | RIESEBEEK Oscar | 78 |