Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 76
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Vos
1
58 kgvan den Broek-Blaak
3
64 kgVisser
4
59 kgPieters
7
58 kgvan Vleuten
8
59 kgvan Dijk
11
71 kgSlappendel
14
67 kgBrand
15
57 kgEnsing
17
62 kgKoedooder
18
69 kgGunnewijk
21
67 kgvan den Brand
29
51 kgde Baat
36
56 kgKessler
38
60 kgvan der Breggen
66
56 kgde Vries
70
62 kg
1
58 kgvan den Broek-Blaak
3
64 kgVisser
4
59 kgPieters
7
58 kgvan Vleuten
8
59 kgvan Dijk
11
71 kgSlappendel
14
67 kgBrand
15
57 kgEnsing
17
62 kgKoedooder
18
69 kgGunnewijk
21
67 kgvan den Brand
29
51 kgde Baat
36
56 kgKessler
38
60 kgvan der Breggen
66
56 kgde Vries
70
62 kg
Weight (KG) →
Result →
71
51
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | VOS Marianne | 58 |
3 | VAN DEN BROEK-BLAAK Chantal | 64 |
4 | VISSER Adrie | 59 |
7 | PIETERS Amy | 58 |
8 | VAN VLEUTEN Annemiek | 59 |
11 | VAN DIJK Ellen | 71 |
14 | SLAPPENDEL Iris | 67 |
15 | BRAND Lucinda | 57 |
17 | ENSING Janneke | 62 |
18 | KOEDOODER Vera | 69 |
21 | GUNNEWIJK Loes | 67 |
29 | VAN DEN BRAND Daphny | 51 |
36 | DE BAAT Kim | 56 |
38 | KESSLER Nina | 60 |
66 | VAN DER BREGGEN Anna | 56 |
70 | DE VRIES Marijn | 62 |