Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Boogerd
1
62 kgHoffman
2
80 kgvan Bon
3
72 kgvan Heeswijk
4
73 kgKnaven
5
68 kgVoskamp
6
75 kgJonker
8
69 kgVierhouten
9
71 kgden Bakker
10
71 kgKoerts
11
78 kgMoerenhout
12
74 kgde Groot
13
65 kgPronk
15
73 kgde Jongh
18
76 kgvan der Poel
20
70 kgLotz
23
76 kgvan der Steen
30
70 kgCordes
33
70 kgBoven
38
65 kg
1
62 kgHoffman
2
80 kgvan Bon
3
72 kgvan Heeswijk
4
73 kgKnaven
5
68 kgVoskamp
6
75 kgJonker
8
69 kgVierhouten
9
71 kgden Bakker
10
71 kgKoerts
11
78 kgMoerenhout
12
74 kgde Groot
13
65 kgPronk
15
73 kgde Jongh
18
76 kgvan der Poel
20
70 kgLotz
23
76 kgvan der Steen
30
70 kgCordes
33
70 kgBoven
38
65 kg
Weight (KG) →
Result →
80
62
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | BOOGERD Michael | 62 |
2 | HOFFMAN Tristan | 80 |
3 | VAN BON Léon | 72 |
4 | VAN HEESWIJK Max | 73 |
5 | KNAVEN Servais | 68 |
6 | VOSKAMP Bart | 75 |
8 | JONKER Patrick | 69 |
9 | VIERHOUTEN Aart | 71 |
10 | DEN BAKKER Maarten | 71 |
11 | KOERTS Jans | 78 |
12 | MOERENHOUT Koos | 74 |
13 | DE GROOT Bram | 65 |
15 | PRONK Matthé | 73 |
18 | DE JONGH Steven | 76 |
20 | VAN DER POEL Adrie | 70 |
23 | LOTZ Marc | 76 |
30 | VAN DER STEEN Niels | 70 |
33 | CORDES Tom | 70 |
38 | BOVEN Jan | 65 |