Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
van Bon
1
72 kgMoerenhout
2
74 kgDekker
3
66 kgden Bakker
5
71 kgde Jongh
6
76 kgKnaven
7
68 kgvan Heeswijk
8
73 kgLöwik
10
72 kgVeneberg
11
75 kgHoffman
12
80 kgKroon
15
67 kgSchmitz
20
77 kgBoven
22
65 kgPronk
23
73 kgGroenendaal
24
66 kgBrentjens
25
79 kgLotz
26
76 kgBlijlevens
27
70 kg
1
72 kgMoerenhout
2
74 kgDekker
3
66 kgden Bakker
5
71 kgde Jongh
6
76 kgKnaven
7
68 kgvan Heeswijk
8
73 kgLöwik
10
72 kgVeneberg
11
75 kgHoffman
12
80 kgKroon
15
67 kgSchmitz
20
77 kgBoven
22
65 kgPronk
23
73 kgGroenendaal
24
66 kgBrentjens
25
79 kgLotz
26
76 kgBlijlevens
27
70 kg
Weight (KG) →
Result →
80
65
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VAN BON Léon | 72 |
2 | MOERENHOUT Koos | 74 |
3 | DEKKER Erik | 66 |
5 | DEN BAKKER Maarten | 71 |
6 | DE JONGH Steven | 76 |
7 | KNAVEN Servais | 68 |
8 | VAN HEESWIJK Max | 73 |
10 | LÖWIK Gerben | 72 |
11 | VENEBERG Thorwald | 75 |
12 | HOFFMAN Tristan | 80 |
15 | KROON Karsten | 67 |
20 | SCHMITZ Bram | 77 |
22 | BOVEN Jan | 65 |
23 | PRONK Matthé | 73 |
24 | GROENENDAAL Richard | 66 |
25 | BRENTJENS Bart | 79 |
26 | LOTZ Marc | 76 |
27 | BLIJLEVENS Jeroen | 70 |