Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Hoogerland
1
65 kgDumoulin
2
69 kgLangeveld
3
67 kgLigthart
4
72 kgTerpstra
5
75 kgSlagter
6
57 kgKroon
7
67 kgKelderman
8
65 kgTankink
9
71 kgvan Poppel
10
78 kgBoom
11
75 kgKreder
12
67 kgLeezer
13
76 kgTjallingii
14
81 kgKeizer
15
72 kgTerpstra
16
64 kgten Dam
18
67 kgSinkeldam
19
77 kgMol
20
83 kgGoesinnen
21
75 kgde Jonge
22
65 kgGoos
23
65 kgKreder
24
70 kg
1
65 kgDumoulin
2
69 kgLangeveld
3
67 kgLigthart
4
72 kgTerpstra
5
75 kgSlagter
6
57 kgKroon
7
67 kgKelderman
8
65 kgTankink
9
71 kgvan Poppel
10
78 kgBoom
11
75 kgKreder
12
67 kgLeezer
13
76 kgTjallingii
14
81 kgKeizer
15
72 kgTerpstra
16
64 kgten Dam
18
67 kgSinkeldam
19
77 kgMol
20
83 kgGoesinnen
21
75 kgde Jonge
22
65 kgGoos
23
65 kgKreder
24
70 kg
Weight (KG) →
Result →
83
57
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | HOOGERLAND Johnny | 65 |
2 | DUMOULIN Tom | 69 |
3 | LANGEVELD Sebastian | 67 |
4 | LIGTHART Pim | 72 |
5 | TERPSTRA Niki | 75 |
6 | SLAGTER Tom-Jelte | 57 |
7 | KROON Karsten | 67 |
8 | KELDERMAN Wilco | 65 |
9 | TANKINK Bram | 71 |
10 | VAN POPPEL Boy | 78 |
11 | BOOM Lars | 75 |
12 | KREDER Michel | 67 |
13 | LEEZER Tom | 76 |
14 | TJALLINGII Maarten | 81 |
15 | KEIZER Martijn | 72 |
16 | TERPSTRA Mike | 64 |
18 | TEN DAM Laurens | 67 |
19 | SINKELDAM Ramon | 77 |
20 | MOL Wouter | 83 |
21 | GOESINNEN Floris | 75 |
22 | DE JONGE Maarten | 65 |
23 | GOOS Marc | 65 |
24 | KREDER Raymond | 70 |