Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
van der Poel
1
75 kgEekhoff
2
75 kgRoosen
3
78 kgEenkhoorn
4
72 kgvan Emden
5
78 kgde Kleijn
6
68 kgvan Kessel
7
68 kgBouwman
8
60 kgvan der Hoorn
9
73 kgSchulting
10
70 kgSinkeldam
11
77 kgvan Schip
12
84 kgLigthart
13
72 kgvan der Lijke
14
61 kgOttema
15
77 kgLindeman
16
69 kgHofstede
17
73 kg
1
75 kgEekhoff
2
75 kgRoosen
3
78 kgEenkhoorn
4
72 kgvan Emden
5
78 kgde Kleijn
6
68 kgvan Kessel
7
68 kgBouwman
8
60 kgvan der Hoorn
9
73 kgSchulting
10
70 kgSinkeldam
11
77 kgvan Schip
12
84 kgLigthart
13
72 kgvan der Lijke
14
61 kgOttema
15
77 kgLindeman
16
69 kgHofstede
17
73 kg
Weight (KG) →
Result →
84
60
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL Mathieu | 75 |
2 | EEKHOFF Nils | 75 |
3 | ROOSEN Timo | 78 |
4 | EENKHOORN Pascal | 72 |
5 | VAN EMDEN Jos | 78 |
6 | DE KLEIJN Arvid | 68 |
7 | VAN KESSEL Corné | 68 |
8 | BOUWMAN Koen | 60 |
9 | VAN DER HOORN Taco | 73 |
10 | SCHULTING Peter | 70 |
11 | SINKELDAM Ramon | 77 |
12 | VAN SCHIP Jan-Willem | 84 |
13 | LIGTHART Pim | 72 |
14 | VAN DER LIJKE Nick | 61 |
15 | OTTEMA Rick | 77 |
16 | LINDEMAN Bert-Jan | 69 |
17 | HOFSTEDE Lennard | 73 |