Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 6
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Menchov
1
65 kgGusev
4
67 kgFirsanov
5
58 kgShilov
6
67 kgRybakov
8
65 kgIsaychev
9
80 kgBrutt
10
70 kgTrusov
11
77 kgIgnatiev
13
67 kgOvechkin
14
61 kgKozontchuk
15
75 kgBelkov
16
71 kgKlimov
17
69 kgRovny
18
62 kgNovikov
19
77 kgEskov
21
73 kgKrasnov
22
65 kgNikolaev
24
66 kgArguelyes
25
66 kgShpilevsky
27
78 kg
1
65 kgGusev
4
67 kgFirsanov
5
58 kgShilov
6
67 kgRybakov
8
65 kgIsaychev
9
80 kgBrutt
10
70 kgTrusov
11
77 kgIgnatiev
13
67 kgOvechkin
14
61 kgKozontchuk
15
75 kgBelkov
16
71 kgKlimov
17
69 kgRovny
18
62 kgNovikov
19
77 kgEskov
21
73 kgKrasnov
22
65 kgNikolaev
24
66 kgArguelyes
25
66 kgShpilevsky
27
78 kg
Weight (KG) →
Result →
80
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | MENCHOV Denis | 65 |
4 | GUSEV Vladimir | 67 |
5 | FIRSANOV Sergey | 58 |
6 | SHILOV Sergey | 67 |
8 | RYBAKOV Alexander | 65 |
9 | ISAYCHEV Vladimir | 80 |
10 | BRUTT Pavel | 70 |
11 | TRUSOV Nikolay | 77 |
13 | IGNATIEV Mikhail | 67 |
14 | OVECHKIN Artem | 61 |
15 | KOZONTCHUK Dmitry | 75 |
16 | BELKOV Maxim | 71 |
17 | KLIMOV Sergey | 69 |
18 | ROVNY Ivan | 62 |
19 | NOVIKOV Nikita | 77 |
21 | ESKOV Nikita | 73 |
22 | KRASNOV Leonid | 65 |
24 | NIKOLAEV Sergey | 66 |
25 | ARGUELYES Arkimedes | 66 |
27 | SHPILEVSKY Boris | 78 |