Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Zakarin
1
67 kgGusev
2
67 kgOvechkin
3
61 kgSerov
4
77 kgKritskiy
5
81 kgIgnatenko
6
63 kgPetrov
7
70 kgIsaychev
8
80 kgIgnatiev
9
67 kgRybakov
10
65 kgKarpets
12
79 kgBrutt
13
70 kgKuznetsov
14
70 kgErshov
15
70 kgChernetski
16
63 kgVorganov
17
65 kgBelkov
18
71 kgKozontchuk
19
75 kgPorsev
21
80 kg
1
67 kgGusev
2
67 kgOvechkin
3
61 kgSerov
4
77 kgKritskiy
5
81 kgIgnatenko
6
63 kgPetrov
7
70 kgIsaychev
8
80 kgIgnatiev
9
67 kgRybakov
10
65 kgKarpets
12
79 kgBrutt
13
70 kgKuznetsov
14
70 kgErshov
15
70 kgChernetski
16
63 kgVorganov
17
65 kgBelkov
18
71 kgKozontchuk
19
75 kgPorsev
21
80 kg
Weight (KG) →
Result →
81
61
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ZAKARIN Ilnur | 67 |
2 | GUSEV Vladimir | 67 |
3 | OVECHKIN Artem | 61 |
4 | SEROV Alexander | 77 |
5 | KRITSKIY Timofey | 81 |
6 | IGNATENKO Petr | 63 |
7 | PETROV Evgeni | 70 |
8 | ISAYCHEV Vladimir | 80 |
9 | IGNATIEV Mikhail | 67 |
10 | RYBAKOV Alexander | 65 |
12 | KARPETS Vladimir | 79 |
13 | BRUTT Pavel | 70 |
14 | KUZNETSOV Viacheslav | 70 |
15 | ERSHOV Artur | 70 |
16 | CHERNETSKI Sergei | 63 |
17 | VORGANOV Eduard | 65 |
18 | BELKOV Maxim | 71 |
19 | KOZONTCHUK Dmitry | 75 |
21 | PORSEV Alexander | 80 |