Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Trofimov
1
59 kgBrutt
2
70 kgLagutin
3
68 kgKuznetsov
4
70 kgIsaychev
5
80 kgKochetkov
7
70 kgRovny
8
62 kgVorganov
10
65 kgSilin
11
61 kgPorsev
13
80 kgTsatevich
14
64 kgBalykin
15
68 kgBoev
17
74 kgTrusov
27
77 kgPozdnyakov
30
67 kgBelkov
31
71 kgRybakov
32
65 kgPetrov
33
70 kgNikolaev
34
66 kgFirsanov
35
58 kgChernetski
36
63 kgSolomennikov
37
72 kg
1
59 kgBrutt
2
70 kgLagutin
3
68 kgKuznetsov
4
70 kgIsaychev
5
80 kgKochetkov
7
70 kgRovny
8
62 kgVorganov
10
65 kgSilin
11
61 kgPorsev
13
80 kgTsatevich
14
64 kgBalykin
15
68 kgBoev
17
74 kgTrusov
27
77 kgPozdnyakov
30
67 kgBelkov
31
71 kgRybakov
32
65 kgPetrov
33
70 kgNikolaev
34
66 kgFirsanov
35
58 kgChernetski
36
63 kgSolomennikov
37
72 kg
Weight (KG) →
Result →
80
58
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | TROFIMOV Yuri | 59 |
2 | BRUTT Pavel | 70 |
3 | LAGUTIN Sergey | 68 |
4 | KUZNETSOV Viacheslav | 70 |
5 | ISAYCHEV Vladimir | 80 |
7 | KOCHETKOV Pavel | 70 |
8 | ROVNY Ivan | 62 |
10 | VORGANOV Eduard | 65 |
11 | SILIN Egor | 61 |
13 | PORSEV Alexander | 80 |
14 | TSATEVICH Alexey | 64 |
15 | BALYKIN Ivan | 68 |
17 | BOEV Igor | 74 |
27 | TRUSOV Nikolay | 77 |
30 | POZDNYAKOV Kirill | 67 |
31 | BELKOV Maxim | 71 |
32 | RYBAKOV Alexander | 65 |
33 | PETROV Evgeni | 70 |
34 | NIKOLAEV Sergey | 66 |
35 | FIRSANOV Sergey | 58 |
36 | CHERNETSKI Sergei | 63 |
37 | SOLOMENNIKOV Andrei | 72 |