Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sánchez
1
73 kgGutiérrez
2
71 kgPlaza
3
77 kgCésar Veloso
4
69 kgCastroviejo
5
62 kgBarredo
6
61 kgde Segovia
7
75 kgMancebo
8
64 kgDurán
9
70 kgMoreno
10
63 kgRabuñal
11
65 kgHerrada
12
65 kgGarcía
14
68 kgMora
15
65 kgCarrasco
16
56 kgMas
17
69 kgToribio
18
64 kgHernández
19
64 kgChacón
23
70 kgMata
24
72 kgCabello
25
67 kg
1
73 kgGutiérrez
2
71 kgPlaza
3
77 kgCésar Veloso
4
69 kgCastroviejo
5
62 kgBarredo
6
61 kgde Segovia
7
75 kgMancebo
8
64 kgDurán
9
70 kgMoreno
10
63 kgRabuñal
11
65 kgHerrada
12
65 kgGarcía
14
68 kgMora
15
65 kgCarrasco
16
56 kgMas
17
69 kgToribio
18
64 kgHernández
19
64 kgChacón
23
70 kgMata
24
72 kgCabello
25
67 kg
Weight (KG) →
Result →
77
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | SÁNCHEZ Luis León | 73 |
2 | GUTIÉRREZ José Iván | 71 |
3 | PLAZA Rubén | 77 |
4 | CÉSAR VELOSO Gustavo | 69 |
5 | CASTROVIEJO Jonathan | 62 |
6 | BARREDO Carlos | 61 |
7 | DE SEGOVIA José Antonio | 75 |
8 | MANCEBO Francisco | 64 |
9 | DURÁN Arkaitz | 70 |
10 | MORENO Javier | 63 |
11 | RABUÑAL Gonzalo | 65 |
12 | HERRADA José | 65 |
14 | GARCÍA Ricardo | 68 |
15 | MORA Arturo | 65 |
16 | CARRASCO Sergio | 56 |
17 | MAS Lluís | 69 |
18 | TORIBIO José Vicente | 64 |
19 | HERNÁNDEZ Aitor | 64 |
23 | CHACÓN Javier | 70 |
24 | MATA Enrique | 72 |
25 | CABELLO Antonio | 67 |