Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Valverde
1
61 kgIzagirre
2
60 kgCastroviejo
3
62 kgHerrada
4
70 kgErviti
5
82 kgIntxausti
6
61 kgTeruel
7
73 kgde Segovia
8
75 kgFraile
9
72 kgRubio
10
81 kgde la Parte
12
64 kgBravo
14
61 kgTorres
15
70 kgTxoperena
17
67 kgSánchez
19
73 kgMancebo
21
64 kgCantero
23
68 kgVerona
24
68 kgMas
25
69 kgMadrazo
27
61 kgGonzález
29
65 kgGarcía de Mateos
33
68 kgNieto
36
58 kg
1
61 kgIzagirre
2
60 kgCastroviejo
3
62 kgHerrada
4
70 kgErviti
5
82 kgIntxausti
6
61 kgTeruel
7
73 kgde Segovia
8
75 kgFraile
9
72 kgRubio
10
81 kgde la Parte
12
64 kgBravo
14
61 kgTorres
15
70 kgTxoperena
17
67 kgSánchez
19
73 kgMancebo
21
64 kgCantero
23
68 kgVerona
24
68 kgMas
25
69 kgMadrazo
27
61 kgGonzález
29
65 kgGarcía de Mateos
33
68 kgNieto
36
58 kg
Weight (KG) →
Result →
82
58
1
36
# | Rider | Weight (KG) |
---|---|---|
1 | VALVERDE Alejandro | 61 |
2 | IZAGIRRE Ion | 60 |
3 | CASTROVIEJO Jonathan | 62 |
4 | HERRADA Jesús | 70 |
5 | ERVITI Imanol | 82 |
6 | INTXAUSTI Beñat | 61 |
7 | TERUEL Eloy | 73 |
8 | DE SEGOVIA José Antonio | 75 |
9 | FRAILE Omar | 72 |
10 | RUBIO Diego | 81 |
12 | DE LA PARTE Víctor | 64 |
14 | BRAVO Garikoitz | 61 |
15 | TORRES Albert | 70 |
17 | TXOPERENA Beñat | 67 |
19 | SÁNCHEZ Luis León | 73 |
21 | MANCEBO Francisco | 64 |
23 | CANTERO Francisco Javier | 68 |
24 | VERONA Carlos | 68 |
25 | MAS Lluís | 69 |
27 | MADRAZO Ángel | 61 |
29 | GONZÁLEZ Mario | 65 |
33 | GARCÍA DE MATEOS Vicente | 68 |
36 | NIETO Edgar | 58 |