Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Castrillo
1
65 kgSevilla
7
64 kgFernández
9
78 kgBallesteros
10
60 kgSureda
12
70 kgBerrade
14
72 kgBou
15
62 kgLópez
17
60 kgCantón
18
65 kgMartín
20
69 kgParra
23
55 kgCañellas
24
64 kgBueno
26
57 kgMárquez
27
66 kgIbarguren
30
70 kgViejo
37
75 kgGalván
55
69 kgMoreno
59
56 kgGarcía
71
61 kgLópez
83
70 kg
1
65 kgSevilla
7
64 kgFernández
9
78 kgBallesteros
10
60 kgSureda
12
70 kgBerrade
14
72 kgBou
15
62 kgLópez
17
60 kgCantón
18
65 kgMartín
20
69 kgParra
23
55 kgCañellas
24
64 kgBueno
26
57 kgMárquez
27
66 kgIbarguren
30
70 kgViejo
37
75 kgGalván
55
69 kgMoreno
59
56 kgGarcía
71
61 kgLópez
83
70 kg
Weight (KG) →
Result →
78
55
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | CASTRILLO Jaime | 65 |
7 | SEVILLA Diego Pablo | 64 |
9 | FERNÁNDEZ Miguel Ángel | 78 |
10 | BALLESTEROS Miguel Ángel | 60 |
12 | SUREDA Jaume | 70 |
14 | BERRADE Urko | 72 |
15 | BOU Joan | 62 |
17 | LÓPEZ Juan Pedro | 60 |
18 | CANTÓN Isaac | 65 |
20 | MARTÍN Sergio Roman | 69 |
23 | PARRA José Félix | 55 |
24 | CAÑELLAS Xavier | 64 |
26 | BUENO Jorge | 57 |
27 | MÁRQUEZ Martí | 66 |
30 | IBARGUREN Oier | 70 |
37 | VIEJO José Daniel | 75 |
55 | GALVÁN Francisco | 69 |
59 | MORENO Iván | 56 |
71 | GARCÍA José Antonio | 61 |
83 | LÓPEZ Diego | 70 |