Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 21
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Ayuso
1
65 kgBennassar
2
71 kgGilabert
8
57 kgArrieta
9
64 kgErostarbe
10
65.5 kgEtxeberria
12
65 kgBeneit
13
58 kgAznar
17
59 kgCavia
19
62 kgRomeo
20
75 kgCabedo
24
57 kgMedina
27
66 kgGimeno
29
61 kgLuna
36
60 kgGonzález
40
61 kgRey
41
65 kgFernandez
42
69 kgTorrent
44
67 kgCarrascosa
45
58 kgGeerlings
46
72 kgGutiérrez
55
58 kgLozano
56
65 kgGuardeño
62
62 kgAznar
74
68 kg
1
65 kgBennassar
2
71 kgGilabert
8
57 kgArrieta
9
64 kgErostarbe
10
65.5 kgEtxeberria
12
65 kgBeneit
13
58 kgAznar
17
59 kgCavia
19
62 kgRomeo
20
75 kgCabedo
24
57 kgMedina
27
66 kgGimeno
29
61 kgLuna
36
60 kgGonzález
40
61 kgRey
41
65 kgFernandez
42
69 kgTorrent
44
67 kgCarrascosa
45
58 kgGeerlings
46
72 kgGutiérrez
55
58 kgLozano
56
65 kgGuardeño
62
62 kgAznar
74
68 kg
Weight (KG) →
Result →
75
57
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | AYUSO Juan | 65 |
2 | BENNASSAR Francesc | 71 |
8 | GILABERT Arnau | 57 |
9 | ARRIETA Igor | 64 |
10 | EROSTARBE Aimar | 65.5 |
12 | ETXEBERRIA Haimar | 65 |
13 | BENEIT Pedro | 58 |
17 | AZNAR Hugo | 59 |
19 | CAVIA Daniel | 62 |
20 | ROMEO Iván | 75 |
24 | CABEDO Marc | 57 |
27 | MEDINA José Luis | 66 |
29 | GIMENO David | 61 |
36 | LUNA Alejandro | 60 |
40 | GONZÁLEZ Antonio | 61 |
41 | REY Martín | 65 |
42 | FERNANDEZ Alberto | 69 |
44 | TORRENT Pau | 67 |
45 | CARRASCOSA Pablo | 58 |
46 | GEERLINGS Sergio | 72 |
55 | GUTIÉRREZ Jorge | 58 |
56 | LOZANO Juan Pedro | 65 |
62 | GUARDEÑO Jaume | 62 |
74 | AZNAR Unai | 68 |