Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 106
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Romeo
1
75 kgAznar
2
59 kgPérez
5
66 kgde la Calle
7
65 kgCarbayeda
8
68 kgGuardeño
13
62 kgTerrasa
16
67 kgGoñi
19
65 kgRey
23
65 kgErostarbe
25
65.5 kgZabala
26
60 kgde Pablo
28
61 kgTorres
33
59 kgAzanza
39
74 kgZubeldia
41
72 kgUncilla
47
61 kgGonzález
49
61 kgFernández
53
57 kgPadierna
54
63 kgNavarro
56
63 kgEtxeberria
59
65 kgLozano
61
65 kgCepa
68
62 kg
1
75 kgAznar
2
59 kgPérez
5
66 kgde la Calle
7
65 kgCarbayeda
8
68 kgGuardeño
13
62 kgTerrasa
16
67 kgGoñi
19
65 kgRey
23
65 kgErostarbe
25
65.5 kgZabala
26
60 kgde Pablo
28
61 kgTorres
33
59 kgAzanza
39
74 kgZubeldia
41
72 kgUncilla
47
61 kgGonzález
49
61 kgFernández
53
57 kgPadierna
54
63 kgNavarro
56
63 kgEtxeberria
59
65 kgLozano
61
65 kgCepa
68
62 kg
Weight (KG) →
Result →
75
57
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | ROMEO Iván | 75 |
2 | AZNAR Hugo | 59 |
5 | PÉREZ César | 66 |
7 | DE LA CALLE Hugo | 65 |
8 | CARBAYEDA Beñat | 68 |
13 | GUARDEÑO Jaume | 62 |
16 | TERRASA Marc | 67 |
19 | GOÑI Ismael | 65 |
23 | REY Martín | 65 |
25 | EROSTARBE Aimar | 65.5 |
26 | ZABALA Xabier | 60 |
28 | DE PABLO Samuel | 61 |
33 | TORRES Marc | 59 |
39 | AZANZA Ibai | 74 |
41 | ZUBELDIA Unai | 72 |
47 | UNCILLA Mikel | 61 |
49 | GONZÁLEZ Antonio | 61 |
53 | FERNÁNDEZ Samuel | 57 |
54 | PADIERNA Marco | 63 |
56 | NAVARRO Iñaki | 63 |
59 | ETXEBERRIA Haimar | 65 |
61 | LOZANO Juan Pedro | 65 |
68 | CEPA Daniel | 62 |