Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Elmiger
1
73 kgMoos
2
64 kgStrauss
3
69 kgZberg
4
69 kgMorabito
5
74 kgStalder
7
58 kgDietziker
8
67 kgRast
9
80 kgClerc
11
71 kgSchnider
12
65 kgCalcagni
13
65 kgBeuchat
14
62 kgWyss
18
65 kgSchär
19
78 kgTschopp
20
62 kgAebersold
21
58 kgZberg
25
72 kgLoosli
27
71 kgJeker
29
72 kgBertogliati
32
73 kgAlbasini
35
65 kgCancellara
38
80 kgBourgeois
43
61 kgZampieri
44
62 kg
1
73 kgMoos
2
64 kgStrauss
3
69 kgZberg
4
69 kgMorabito
5
74 kgStalder
7
58 kgDietziker
8
67 kgRast
9
80 kgClerc
11
71 kgSchnider
12
65 kgCalcagni
13
65 kgBeuchat
14
62 kgWyss
18
65 kgSchär
19
78 kgTschopp
20
62 kgAebersold
21
58 kgZberg
25
72 kgLoosli
27
71 kgJeker
29
72 kgBertogliati
32
73 kgAlbasini
35
65 kgCancellara
38
80 kgBourgeois
43
61 kgZampieri
44
62 kg
Weight (KG) →
Result →
80
58
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | ELMIGER Martin | 73 |
2 | MOOS Alexandre | 64 |
3 | STRAUSS Marcel | 69 |
4 | ZBERG Markus | 69 |
5 | MORABITO Steve | 74 |
7 | STALDER Florian | 58 |
8 | DIETZIKER Andreas | 67 |
9 | RAST Grégory | 80 |
11 | CLERC Aurélien | 71 |
12 | SCHNIDER Daniel | 65 |
13 | CALCAGNI Patrick | 65 |
14 | BEUCHAT Roger | 62 |
18 | WYSS Danilo | 65 |
19 | SCHÄR Michael | 78 |
20 | TSCHOPP Johann | 62 |
21 | AEBERSOLD Niki | 58 |
25 | ZBERG Beat | 72 |
27 | LOOSLI David | 71 |
29 | JEKER Fabian | 72 |
32 | BERTOGLIATI Rubens | 73 |
35 | ALBASINI Michael | 65 |
38 | CANCELLARA Fabian | 80 |
43 | BOURGEOIS Guillaume | 61 |
44 | ZAMPIERI Steve | 62 |