Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Reichenbach
1
64 kgPellaud
2
70 kgFrank
3
64 kgHirschi
4
61 kgSchelling
5
61 kgSchär
6
78 kgWyss
7
65 kgKüng
8
83 kgLienhard
9
73 kgRüegg
10
66 kgAlbasini
11
65 kgHollenstein
12
80 kgDillier
13
75 kgBanzer
15
56 kgBissegger
17
78 kgStüssi
18
68 kgMüller
19
74 kgFrankiny
21
67 kg
1
64 kgPellaud
2
70 kgFrank
3
64 kgHirschi
4
61 kgSchelling
5
61 kgSchär
6
78 kgWyss
7
65 kgKüng
8
83 kgLienhard
9
73 kgRüegg
10
66 kgAlbasini
11
65 kgHollenstein
12
80 kgDillier
13
75 kgBanzer
15
56 kgBissegger
17
78 kgStüssi
18
68 kgMüller
19
74 kgFrankiny
21
67 kg
Weight (KG) →
Result →
83
56
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | REICHENBACH Sébastien | 64 |
2 | PELLAUD Simon | 70 |
3 | FRANK Mathias | 64 |
4 | HIRSCHI Marc | 61 |
5 | SCHELLING Patrick | 61 |
6 | SCHÄR Michael | 78 |
7 | WYSS Danilo | 65 |
8 | KÜNG Stefan | 83 |
9 | LIENHARD Fabian | 73 |
10 | RÜEGG Lukas | 66 |
11 | ALBASINI Michael | 65 |
12 | HOLLENSTEIN Reto | 80 |
13 | DILLIER Silvan | 75 |
15 | BANZER Gordian | 56 |
17 | BISSEGGER Stefan | 78 |
18 | STÜSSI Colin | 68 |
19 | MÜLLER Patrick | 74 |
21 | FRANKINY Kilian | 67 |