Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Craddock
1
69 kgHaga
2
71.5 kgvan Garderen
3
72 kgRosskopf
4
74 kgBarta
5
61 kgSheffield
6
73 kgDeuel
7
70 kgWilliams
11
73 kgHecht
12
72 kgRiccitello
13
55 kgArnopol
19
61 kgScott
20
66 kgGarrison
27
76 kgZimmer
28
68 kgDaniel
29
64 kgLange
33
72 kgSchunk
35
65 kgShipley
42
70 kgSmith
44
77 kg
1
69 kgHaga
2
71.5 kgvan Garderen
3
72 kgRosskopf
4
74 kgBarta
5
61 kgSheffield
6
73 kgDeuel
7
70 kgWilliams
11
73 kgHecht
12
72 kgRiccitello
13
55 kgArnopol
19
61 kgScott
20
66 kgGarrison
27
76 kgZimmer
28
68 kgDaniel
29
64 kgLange
33
72 kgSchunk
35
65 kgShipley
42
70 kgSmith
44
77 kg
Weight (KG) →
Result →
77
55
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | CRADDOCK Lawson | 69 |
2 | HAGA Chad | 71.5 |
3 | VAN GARDEREN Tejay | 72 |
4 | ROSSKOPF Joey | 74 |
5 | BARTA Will | 61 |
6 | SHEFFIELD Magnus | 73 |
7 | DEUEL Drake | 70 |
11 | WILLIAMS Tyler | 73 |
12 | HECHT Gage | 72 |
13 | RICCITELLO Matthew | 55 |
19 | ARNOPOL Richard | 61 |
20 | SCOTT Jared | 66 |
27 | GARRISON Ian | 76 |
28 | ZIMMER Matt | 68 |
29 | DANIEL Gregory | 64 |
33 | LANGE Colby | 72 |
35 | SCHUNK Conor | 65 |
42 | SHIPLEY Gabriel | 70 |
44 | SMITH Caleb | 77 |