Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Kennaugh
1
66 kgCavendish
2
70 kgStannard
3
83 kgRowe
4
72 kgThwaites
5
71 kgBlythe
6
68 kgDoull
7
71 kgLampier
9
68 kgDowning
11
64 kgFenn
13
79 kgStewart
16
71 kgMcNally
17
72 kgGibson
18
76 kgDavies
19
66 kgYates
20
58 kgHolmes
21
67 kgShaw
22
63 kgCullaigh
23
78 kgOpie
26
73 kgPearson
28
53 kgGeoghegan Hart
29
65 kg
1
66 kgCavendish
2
70 kgStannard
3
83 kgRowe
4
72 kgThwaites
5
71 kgBlythe
6
68 kgDoull
7
71 kgLampier
9
68 kgDowning
11
64 kgFenn
13
79 kgStewart
16
71 kgMcNally
17
72 kgGibson
18
76 kgDavies
19
66 kgYates
20
58 kgHolmes
21
67 kgShaw
22
63 kgCullaigh
23
78 kgOpie
26
73 kgPearson
28
53 kgGeoghegan Hart
29
65 kg
Weight (KG) →
Result →
83
53
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | KENNAUGH Peter | 66 |
2 | CAVENDISH Mark | 70 |
3 | STANNARD Ian | 83 |
4 | ROWE Luke | 72 |
5 | THWAITES Scott | 71 |
6 | BLYTHE Adam | 68 |
7 | DOULL Owain | 71 |
9 | LAMPIER Steven | 68 |
11 | DOWNING Russell | 64 |
13 | FENN Andrew | 79 |
16 | STEWART Thomas | 71 |
17 | MCNALLY Mark | 72 |
18 | GIBSON Matthew | 76 |
19 | DAVIES Scott | 66 |
20 | YATES Simon | 58 |
21 | HOLMES Matthew | 67 |
22 | SHAW James | 63 |
23 | CULLAIGH Gabriel | 78 |
26 | OPIE Chris | 73 |
28 | PEARSON Daniel | 53 |
29 | GEOGHEGAN HART Tao | 65 |