Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 58
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Swift
1
75 kgBlythe
2
68 kgDoull
3
71 kgScott
4
73 kgWright
5
75 kgCullaigh
7
78 kgSwift
8
69 kgChristian
11
72 kgBigham
14
75 kgHolmes
15
67 kgTanfield
16
80 kgStewart
17
71 kgDonovan
18
70 kgStannard
19
83 kgTennant
21
82 kgBostock
24
69 kgTurner
26
74 kgLatham
30
81 kgKyffin
31
72 kgStedman
32
54 kgMcNally
33
72 kgShaw
35
63 kgPidcock
38
58 kg
1
75 kgBlythe
2
68 kgDoull
3
71 kgScott
4
73 kgWright
5
75 kgCullaigh
7
78 kgSwift
8
69 kgChristian
11
72 kgBigham
14
75 kgHolmes
15
67 kgTanfield
16
80 kgStewart
17
71 kgDonovan
18
70 kgStannard
19
83 kgTennant
21
82 kgBostock
24
69 kgTurner
26
74 kgLatham
30
81 kgKyffin
31
72 kgStedman
32
54 kgMcNally
33
72 kgShaw
35
63 kgPidcock
38
58 kg
Weight (KG) →
Result →
83
54
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | SWIFT Connor | 75 |
2 | BLYTHE Adam | 68 |
3 | DOULL Owain | 71 |
4 | SCOTT Robert | 73 |
5 | WRIGHT Fred | 75 |
7 | CULLAIGH Gabriel | 78 |
8 | SWIFT Ben | 69 |
11 | CHRISTIAN Mark | 72 |
14 | BIGHAM Daniel | 75 |
15 | HOLMES Matthew | 67 |
16 | TANFIELD Charlie | 80 |
17 | STEWART Thomas | 71 |
18 | DONOVAN Mark | 70 |
19 | STANNARD Ian | 83 |
21 | TENNANT Andrew | 82 |
24 | BOSTOCK Matthew | 69 |
26 | TURNER Ben | 74 |
30 | LATHAM Christopher | 81 |
31 | KYFFIN Zeb | 72 |
32 | STEDMAN Maximilian | 54 |
33 | MCNALLY Mark | 72 |
35 | SHAW James | 63 |
38 | PIDCOCK Thomas | 58 |