Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 38
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Watson
1
68 kgBrennan
2
68 kgVernon
3
74 kgHayter
4
70 kgAskey
5
75 kgThornley
6
76 kgBush
9
58 kgBlackmore
10
66 kgFlynn
12
67 kgDoull
13
71 kgStewart
14
66 kgGolliker
15
67 kgPidcock
22
57 kgGeorge
25
78 kgJohnston
26
55 kgAskey
27
70 kgGranger
28
71 kgSutton
30
68 kgWhitcher
31
71 kgWood
32
72 kgPeace
35
64 kgPortsmouth
37
70 kgWood
38
66 kg
1
68 kgBrennan
2
68 kgVernon
3
74 kgHayter
4
70 kgAskey
5
75 kgThornley
6
76 kgBush
9
58 kgBlackmore
10
66 kgFlynn
12
67 kgDoull
13
71 kgStewart
14
66 kgGolliker
15
67 kgPidcock
22
57 kgGeorge
25
78 kgJohnston
26
55 kgAskey
27
70 kgGranger
28
71 kgSutton
30
68 kgWhitcher
31
71 kgWood
32
72 kgPeace
35
64 kgPortsmouth
37
70 kgWood
38
66 kg
Weight (KG) →
Result →
78
55
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | WATSON Samuel | 68 |
2 | BRENNAN Matthew | 68 |
3 | VERNON Ethan | 74 |
4 | HAYTER Ethan | 70 |
5 | ASKEY Lewis | 75 |
6 | THORNLEY Callum | 76 |
9 | BUSH Jacob | 58 |
10 | BLACKMORE Joseph | 66 |
12 | FLYNN Sean | 67 |
13 | DOULL Owain | 71 |
14 | STEWART Jake | 66 |
15 | GOLLIKER Joshua | 67 |
22 | PIDCOCK Joseph | 57 |
25 | GEORGE Alfred | 78 |
26 | JOHNSTON Calum | 55 |
27 | ASKEY Ben | 70 |
28 | GRANGER Ben | 71 |
30 | SUTTON Louis | 68 |
31 | WHITCHER Jamie | 71 |
32 | WOOD Oliver | 72 |
35 | PEACE Oliver | 64 |
37 | PORTSMOUTH Tom | 70 |
38 | WOOD Harrison | 66 |