Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 78
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Hondo
1
73 kgLisowicz
3
85 kgMouris
4
91 kgWagner
5
75 kgRadochla
6
70 kgCiolek
8
75 kgSchulze
9
70 kgKiendyś
10
78 kgKrupa
12
74 kgPawlak
13
73 kgVinther
17
68 kgEichler
20
78 kgStauff
23
82 kgGeschke
48
64 kgWestphal
61
75 kgGottfried
65
60 kgHuizenga
67
72 kgRoels
69
75 kgClancy
82
79 kgFlammang
89
80 kgBartko
90
78 kgSapa
94
82 kgReimer
100
69 kg
1
73 kgLisowicz
3
85 kgMouris
4
91 kgWagner
5
75 kgRadochla
6
70 kgCiolek
8
75 kgSchulze
9
70 kgKiendyś
10
78 kgKrupa
12
74 kgPawlak
13
73 kgVinther
17
68 kgEichler
20
78 kgStauff
23
82 kgGeschke
48
64 kgWestphal
61
75 kgGottfried
65
60 kgHuizenga
67
72 kgRoels
69
75 kgClancy
82
79 kgFlammang
89
80 kgBartko
90
78 kgSapa
94
82 kgReimer
100
69 kg
Weight (KG) →
Result →
91
60
1
100
# | Rider | Weight (KG) |
---|---|---|
1 | HONDO Danilo | 73 |
3 | LISOWICZ Tomasz | 85 |
4 | MOURIS Jens | 91 |
5 | WAGNER Robert | 75 |
6 | RADOCHLA Steffen | 70 |
8 | CIOLEK Gerald | 75 |
9 | SCHULZE André | 70 |
10 | KIENDYŚ Tomasz | 78 |
12 | KRUPA Dawid | 74 |
13 | PAWLAK Wojciech | 73 |
17 | VINTHER Troels Rønning | 68 |
20 | EICHLER Markus | 78 |
23 | STAUFF Andreas | 82 |
48 | GESCHKE Simon | 64 |
61 | WESTPHAL Carlo | 75 |
65 | GOTTFRIED Alexander | 60 |
67 | HUIZENGA Jenning | 72 |
69 | ROELS Dominik | 75 |
82 | CLANCY Edward | 79 |
89 | FLAMMANG Tom | 80 |
90 | BARTKO Robert | 78 |
94 | SAPA Marcin | 82 |
100 | REIMER Martin | 69 |